These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30324526)

  • 1. Engineering Inducible Knock-In Mice to Model Oncogenic Brain Tumor Mutations from Endogenous Loci.
    Larson JD; Baker SJ
    Methods Mol Biol; 2019; 1869():207-230. PubMed ID: 30324526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient generation of long-distance conditional alleles using recombineering and a dual selection strategy in replicate plates.
    Voehringer D; Wu D; Liang HE; Locksley RM
    BMC Biotechnol; 2009 Jul; 9():69. PubMed ID: 19638212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal vector for high-efficiency multi-fragment recombineering of BACs and knock-in constructs.
    Dolt KS; Lawrence ML; Miller-Hodges E; Slight J; Thornburn A; Devenney PS; Hohenstein P
    PLoS One; 2013; 8(4):e62054. PubMed ID: 23637962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles.
    Testa G; Zhang Y; Vintersten K; Benes V; Pijnappel WW; Chambers I; Smith AJ; Smith AG; Stewart AF
    Nat Biotechnol; 2003 Apr; 21(4):443-7. PubMed ID: 12627172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of the Cre-loxP system for generating multiple knock-out and knock-in targeted loci.
    Faix J; Linkner J; Nordholz B; Platt JL; Liao XH; Kimmel AR
    Methods Mol Biol; 2013; 983():249-67. PubMed ID: 23494311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The generation and characterization of novel Col1a1FRT-Cre-ER-T2-FRT and Col1a1FRT-STOP-FRT-Cre-ER-T2 mice for sequential mutagenesis.
    Zhang M; Kirsch DG
    Dis Model Mech; 2015 Sep; 8(9):1155-66. PubMed ID: 26183214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques.
    Semprini S; Troup TJ; Kotelevtseva N; King K; Davis JR; Mullins LJ; Chapman KE; Dunbar DR; Mullins JJ
    Nucleic Acids Res; 2007; 35(5):1402-10. PubMed ID: 17284462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene Targeted Mice with Conditional Knock-In (-Out) of NMDAR Mutations.
    Sprengel R; Eltokhi A; Single FN
    Methods Mol Biol; 2017; 1677():201-230. PubMed ID: 28986875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-Specific Regulation of Oncogene Expression Using Cre-Inducible ROSA26 Knock-In Transgenic Mice.
    Carofino BL; Justice MJ
    Curr Protoc Mouse Biol; 2015 Jun; 5(2):187-204. PubMed ID: 26069083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of large deletions and duplications in vivo.
    Lefebvre L
    Methods Mol Biol; 2012; 925():137-46. PubMed ID: 22907494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombineering homologous recombination constructs in Drosophila.
    Carreira-Rosario A; Scoggin S; Shalaby NA; Williams ND; Hiesinger PR; Buszczak M
    J Vis Exp; 2013 Jul; (77):e50346. PubMed ID: 23893070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutant loxP vectors for selectable marker recycle and conditional knock-outs.
    Arakawa H; Lodygin D; Buerstedde JM
    BMC Biotechnol; 2001; 1():7. PubMed ID: 11591226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly efficient recombineering-based method for generating conditional knockout mutations.
    Liu P; Jenkins NA; Copeland NG
    Genome Res; 2003 Mar; 13(3):476-84. PubMed ID: 12618378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():121-31. PubMed ID: 22328430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers.
    Simmons AB; Bloomsburg SJ; Billingslea SA; Merrill MM; Li S; Thomas MW; Fuerst PG
    Mol Vis; 2016; 22():705-17. PubMed ID: 27390513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity
    Ackermann AM; Zhang J; Heller A; Briker A; Kaestner KH
    Mol Metab; 2017 Mar; 6(3):236-244. PubMed ID: 28271030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient removal of loxP-flanked DNA sequences in a gene-targeted locus by transient expression of Cre recombinase in fertilized eggs.
    Sunaga S; Maki K; Komagata Y; Ikuta K; Miyazaki JI
    Mol Reprod Dev; 1997 Feb; 46(2):109-13. PubMed ID: 9021742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using recombineering to generate point mutations: the oligonucleotide-based "hit and fix" method.
    Chang S; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():111-20. PubMed ID: 22328429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Cre recombinase-expressing transgenic mice using bacterial artificial chromosomes.
    Parkitna JR; Engblom D; Schütz G
    Methods Mol Biol; 2009; 530():325-42. PubMed ID: 19266340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cre-mediated recombination at the murine whey acidic protein (mWAP) locus.
    Rucker EB; Piedrahita JA
    Mol Reprod Dev; 1997 Nov; 48(3):324-31. PubMed ID: 9322243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.