BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30324614)

  • 1. Temporal relationship between emitted and endogenous floral scent volatiles in summer- and winter-blooming Jasminum species.
    Barman M; Mitra A
    Physiol Plant; 2019 Aug; 166(4):946-959. PubMed ID: 30324614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic production and emission of floral scent volatiles in Jasminum sambac.
    Bera P; Mukherjee C; Mitra A
    Plant Sci; 2017 Mar; 256():25-38. PubMed ID: 28167035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-specific variation in headspace scent volatiles composition of four commercially cultivated jasmine flowers.
    Bera P; Kotamreddy JN; Samanta T; Maiti S; Mitra A
    Nat Prod Res; 2015; 29(14):1328-35. PubMed ID: 25583067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scent from Jasminum grandiflorum flowers: Investigation of the change in linalool enantiomers at various developmental stages using chemical and molecular methods.
    Pragadheesh VS; Chanotiya CS; Rastogi S; Shasany AK
    Phytochemistry; 2017 Aug; 140():83-94. PubMed ID: 28463687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic trajectories of volatile and non-volatile specialised metabolites in 'overnight' fragrant flowers of Murraya paniculata.
    Paul I; Chatterjee A; Maiti S; Bhadoria PBS; Mitra A
    Plant Biol (Stuttg); 2019 Sep; 21(5):899-910. PubMed ID: 30866144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The floral scents of Nymphaea subg. Hydrocallis (Nymphaeaceae), the New World night-blooming water lilies, and their relation with putative pollinators.
    Maia ACD; de Lima CT; Navarro DMDAF; Chartier M; Giulietti AM; Machado IC
    Phytochemistry; 2014 Jul; 103():67-75. PubMed ID: 24814399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatiles Emitted at Different Flowering Stages of Jasminum sambac and Expression of Genes Related to α-Farnesene Biosynthesis.
    Yu Y; Lyu S; Chen D; Lin Y; Chen J; Chen G; Ye N
    Molecules; 2017 Mar; 22(4):. PubMed ID: 28353656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development.
    Li Y; Ma H; Wan Y; Li T; Liu X; Sun Z; Li Z
    Molecules; 2016 Apr; 21(4):531. PubMed ID: 27110758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission mechanism of floral scent in Petunia axillaris.
    Oyama-Okubo N; Ando T; Watanabe N; Marchesi E; Uchida K; Nakayama M
    Biosci Biotechnol Biochem; 2005 Apr; 69(4):773-7. PubMed ID: 15849416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specialized metabolites contributing to colour and scent volatiles in
    Barman M; Ghissing U; Dey PK; Agarwal A; Bera B; Kotamreddy JNR; Karmakar P; Mitra A
    Nat Prod Res; 2021 Jan; 35(1):140-143. PubMed ID: 31184502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do Plants Eavesdrop on Floral Scent Signals?
    Caruso CM; Parachnowitsch AL
    Trends Plant Sci; 2016 Jan; 21(1):9-15. PubMed ID: 26476624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the emission of volatile organic compounds from flowers of Jasminum sambac using solid-phase micro-extraction fibers and gas chromatography with mass spectrometry detection.
    Pragadheesh VS; Yadav A; Chanotiya CS; Rout PK; Uniyal GC
    Nat Prod Commun; 2011 Sep; 6(9):1333-8. PubMed ID: 21941909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Spatial-Temporal Variation in Floral Volatiles Emitted from
    Cai M; Xu W; Xu Y; Pan H; Zhang Q
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677543
    [No Abstract]   [Full Text] [Related]  

  • 14. Large scale preparation, stress analysis, and storage of headspace volatile condensates from Jasminum sambac flowers.
    Zhou HC; Hou ZW; Wang DX; Ning JM; Wei S
    Food Chem; 2019 Jul; 286():170-178. PubMed ID: 30827592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floral volatiles: from biosynthesis to function.
    Muhlemann JK; Klempien A; Dudareva N
    Plant Cell Environ; 2014 Aug; 37(8):1936-49. PubMed ID: 24588567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds.
    Dhandapani S; Jin J; Sridhar V; Sarojam R; Chua NH; Jang IC
    BMC Genomics; 2017 Jun; 18(1):463. PubMed ID: 28615048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semen-Like Floral Scents and Pollination Biology of a Sapromyophilous Plant Stemona japonica (Stemonaceae).
    Chen G; Jürgens A; Shao L; Liu Y; Sun W; Xia C
    J Chem Ecol; 2015 Mar; 41(3):244-52. PubMed ID: 25835570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental variation in floral volatiles composition of a fragrant orchid Zygopetalum maculatum (Kunth) Garay.
    Bera P; Chakrabarti S; Gaikwad NK; Kutty NN; Barman M; Mitra A
    Nat Prod Res; 2019 Feb; 33(3):435-438. PubMed ID: 29553803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing floral metabolite network in tuberose that underpins scent volatiles synthesis, storage and emission.
    Kutty NN; Ghissing U; Mitra A
    Plant Mol Biol; 2021 Aug; 106(6):533-554. PubMed ID: 34263437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic plasticity of floral volatiles in response to increasing drought stress.
    Campbell DR; Sosenski P; Raguso RA
    Ann Bot; 2019 Mar; 123(4):601-610. PubMed ID: 30364929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.