These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 30324791)
1. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study. Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791 [TBL] [Abstract][Full Text] [Related]
2. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin. Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061 [TBL] [Abstract][Full Text] [Related]
3. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. Kim KH; Pierce MC; Maguluri G; Park BH; Yoon SJ; Lydon M; Sheridan R; de Boer JF J Biomed Opt; 2012 Jun; 17(6):066012. PubMed ID: 22734768 [TBL] [Abstract][Full Text] [Related]
4. Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning. Wu J; Ma Q; Zhou X; Wei Y; Liu Z; Kang H Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38718764 [TBL] [Abstract][Full Text] [Related]
5. The Diagnostic Role of Optical Coherence Tomography (OCT) in Measuring the Depth of Burn and Traumatic Scars for More Accurate Laser Dosimetry: Pilot Study. Waibel JS; Rudnick AC; Wulkan AJ; Holmes JD J Drugs Dermatol; 2016 Nov; 15(11):1375-1380. PubMed ID: 28095550 [TBL] [Abstract][Full Text] [Related]
6. Application of OCT-Derived Attenuation Coefficient in Acute Burn-Damaged Skin. Lu J; Deegan AJ; Cheng Y; Liu T; Zheng Y; Mandell SP; Wang RK Lasers Surg Med; 2021 Nov; 53(9):1192-1200. PubMed ID: 33998012 [TBL] [Abstract][Full Text] [Related]
7. Measuring collagen injury depth for burn severity determination using polarization sensitive optical coherence tomography. Cannon TM; Uribe-Patarroyo N; Villiger M; Bouma BE Sci Rep; 2022 Jun; 12(1):10479. PubMed ID: 35729262 [TBL] [Abstract][Full Text] [Related]
8. [Diagnosis of the deep partial-thickness burn wound of Skh-1 mouse with Optical Coherence Tomography]. Liu SH; Xie WG; Kremer M; Machens HG; Lankenau EM; Huettmann G Zhonghua Shao Shang Za Zhi; 2010 Aug; 26(4):272-5. PubMed ID: 21029684 [TBL] [Abstract][Full Text] [Related]
9. OCT-Based Angiography and Surface Topography in Burn-Damaged Skin. Lu J; Deegan AJ; Cheng Y; Mandell SP; Wang RK Lasers Surg Med; 2021 Aug; 53(6):849-860. PubMed ID: 33305835 [TBL] [Abstract][Full Text] [Related]
10. Towards quantitative assessment of burn based on photoacoustic and optical coherence tomography. Liu K; Chen Z; Zhou W; Xing D J Biophotonics; 2020 Oct; 13(10):e202000126. PubMed ID: 32609427 [TBL] [Abstract][Full Text] [Related]
11. Depth of intact vascular plexus - visualized with optical coherence tomography - correlates to burn depth in thoracic thermic injuries in children. Dalicho V; Straube T; Kelly K; Larsen B; Wünsch L; Lindert J Innov Surg Sci; 2024 Jun; 9(2):83-91. PubMed ID: 39100719 [TBL] [Abstract][Full Text] [Related]
12. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study. Boone MA; Suppa M; Marneffe A; Miyamoto M; Jemec GB; Del Marmol V Arch Dermatol Res; 2015 Oct; 307(8):705-20. PubMed ID: 26066511 [TBL] [Abstract][Full Text] [Related]
14. Determination of burn depth by polarization-sensitive optical coherence tomography. Srinivas SM; de Boer JF; Park H; Keikhanzadeh K; Huang HE; Zhang J; Jung WQ; Chen Z; Nelson JS J Biomed Opt; 2004; 9(1):207-12. PubMed ID: 14715075 [TBL] [Abstract][Full Text] [Related]
15. "Virtual Biopsies" of Normal Skin and Thermal and Chemical Burn Wounds. Silver FH; Shah R Adv Skin Wound Care; 2020 Jun; 33(6):307-312. PubMed ID: 32209812 [TBL] [Abstract][Full Text] [Related]
16. Determination of burn depth with noncontact ultrasonography. Iraniha S; Cinat ME; VanderKam VM; Boyko A; Lee D; Jones J; Achauer BM J Burn Care Rehabil; 2000; 21(4):333-8. PubMed ID: 10935815 [TBL] [Abstract][Full Text] [Related]
17. Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. Sattler EC; Poloczek K; Kästle R; Welzel J J Am Acad Dermatol; 2013 Oct; 69(4):e165-73. PubMed ID: 23790496 [TBL] [Abstract][Full Text] [Related]
18. Optical coherence tomography angiography for longitudinal monitoring of vascular changes in human cutaneous burns. Gong P; Es'haghian S; Wood FM; Sampson DD; McLaughlin RA Exp Dermatol; 2016 Sep; 25(9):722-4. PubMed ID: 27116945 [TBL] [Abstract][Full Text] [Related]
19. Optical coherence tomography: a noninvasive method to assess wound reepithelialization. Singer AJ; Wang Z; McClain SA; Pan Y Acad Emerg Med; 2007 May; 14(5):387-91. PubMed ID: 17363766 [TBL] [Abstract][Full Text] [Related]
20. In vivo burn imaging using Mueller optical coherence tomography. Todorović M; Jiao S; Ai J; Pereda-Cubián D; Stoica G; Wang LV Opt Express; 2008 Jul; 16(14):10279-84. PubMed ID: 18607436 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]