BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 30324791)

  • 1. Optical coherence tomography provides an optical biopsy of burn wounds in children-a pilot study.
    Lindert J; Tafazzoli-Lari K; Tüshaus L; Larsen B; Bacia A; Bouteleux M; Adler T; Dalicho V; Vasileidos V; Kisch T; Stang F; Welzel J; Wünsch L
    J Biomed Opt; 2018 Oct; 23(10):1-6. PubMed ID: 30324791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin.
    Rangaraju LP; Kunapuli G; Every D; Ayala OD; Ganapathy P; Mahadevan-Jansen A
    Burns; 2019 May; 45(3):659-670. PubMed ID: 30385061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography.
    Kim KH; Pierce MC; Maguluri G; Park BH; Yoon SJ; Lydon M; Sheridan R; de Boer JF
    J Biomed Opt; 2012 Jun; 17(6):066012. PubMed ID: 22734768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation and quantitative analysis of optical coherence tomography (OCT) images of laser burned skin based on deep learning.
    Wu J; Ma Q; Zhou X; Wei Y; Liu Z; Kang H
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38718764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Diagnostic Role of Optical Coherence Tomography (OCT) in Measuring the Depth of Burn and Traumatic Scars for More Accurate Laser Dosimetry: Pilot Study.
    Waibel JS; Rudnick AC; Wulkan AJ; Holmes JD
    J Drugs Dermatol; 2016 Nov; 15(11):1375-1380. PubMed ID: 28095550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of OCT-Derived Attenuation Coefficient in Acute Burn-Damaged Skin.
    Lu J; Deegan AJ; Cheng Y; Liu T; Zheng Y; Mandell SP; Wang RK
    Lasers Surg Med; 2021 Nov; 53(9):1192-1200. PubMed ID: 33998012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring collagen injury depth for burn severity determination using polarization sensitive optical coherence tomography.
    Cannon TM; Uribe-Patarroyo N; Villiger M; Bouma BE
    Sci Rep; 2022 Jun; 12(1):10479. PubMed ID: 35729262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Diagnosis of the deep partial-thickness burn wound of Skh-1 mouse with Optical Coherence Tomography].
    Liu SH; Xie WG; Kremer M; Machens HG; Lankenau EM; Huettmann G
    Zhonghua Shao Shang Za Zhi; 2010 Aug; 26(4):272-5. PubMed ID: 21029684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OCT-Based Angiography and Surface Topography in Burn-Damaged Skin.
    Lu J; Deegan AJ; Cheng Y; Mandell SP; Wang RK
    Lasers Surg Med; 2021 Aug; 53(6):849-860. PubMed ID: 33305835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards quantitative assessment of burn based on photoacoustic and optical coherence tomography.
    Liu K; Chen Z; Zhou W; Xing D
    J Biophotonics; 2020 Oct; 13(10):e202000126. PubMed ID: 32609427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-definition optical coherence tomography intrinsic skin ageing assessment in women: a pilot study.
    Boone MA; Suppa M; Marneffe A; Miyamoto M; Jemec GB; Del Marmol V
    Arch Dermatol Res; 2015 Oct; 307(8):705-20. PubMed ID: 26066511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-imaging system for burn depth diagnosis.
    Ganapathy P; Tamminedi T; Qin Y; Nanney L; Cardwell N; Pollins A; Sexton K; Yadegar J
    Burns; 2014 Feb; 40(1):67-81. PubMed ID: 23790396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of burn depth by polarization-sensitive optical coherence tomography.
    Srinivas SM; de Boer JF; Park H; Keikhanzadeh K; Huang HE; Zhang J; Jung WQ; Chen Z; Nelson JS
    J Biomed Opt; 2004; 9(1):207-12. PubMed ID: 14715075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Virtual Biopsies" of Normal Skin and Thermal and Chemical Burn Wounds.
    Silver FH; Shah R
    Adv Skin Wound Care; 2020 Jun; 33(6):307-312. PubMed ID: 32209812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of burn depth with noncontact ultrasonography.
    Iraniha S; Cinat ME; VanderKam VM; Boyko A; Lee D; Jones J; Achauer BM
    J Burn Care Rehabil; 2000; 21(4):333-8. PubMed ID: 10935815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy.
    Sattler EC; Poloczek K; Kästle R; Welzel J
    J Am Acad Dermatol; 2013 Oct; 69(4):e165-73. PubMed ID: 23790496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence tomography angiography for longitudinal monitoring of vascular changes in human cutaneous burns.
    Gong P; Es'haghian S; Wood FM; Sampson DD; McLaughlin RA
    Exp Dermatol; 2016 Sep; 25(9):722-4. PubMed ID: 27116945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography: a noninvasive method to assess wound reepithelialization.
    Singer AJ; Wang Z; McClain SA; Pan Y
    Acad Emerg Med; 2007 May; 14(5):387-91. PubMed ID: 17363766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo burn imaging using Mueller optical coherence tomography.
    Todorović M; Jiao S; Ai J; Pereda-Cubián D; Stoica G; Wang LV
    Opt Express; 2008 Jul; 16(14):10279-84. PubMed ID: 18607436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of burn depth and burn wound healing potential.
    Monstrey S; Hoeksema H; Verbelen J; Pirayesh A; Blondeel P
    Burns; 2008 Sep; 34(6):761-9. PubMed ID: 18511202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.