These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30324880)

  • 1. Recent Progress of Supercritical Carbon Dioxide in Producing Natural Nanomaterials.
    Xie M; Xu M; Chen X; Li Y
    Mini Rev Med Chem; 2019; 19(6):465-476. PubMed ID: 30324880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nano-delivery system for bioactive ingredients using supercritical carbon dioxide and its release behaviors.
    Situ W; Song X; Luo S; Liang Y
    Food Chem; 2017 Aug; 228():219-225. PubMed ID: 28317716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.
    Rehman M; Shekunov BY; York P; Colthorpe P
    J Pharm Sci; 2001 Oct; 90(10):1570-82. PubMed ID: 11745715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.
    Zhao Z; Xie M; Li Y; Chen A; Li G; Zhang J; Hu H; Wang X; Li S
    Int J Nanomedicine; 2015; 10():3171-81. PubMed ID: 25995627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micronization, characterization and in-vitro dissolution of shellac from PGSS supercritical CO2 technique.
    Labuschagne PW; Naicker B; Kalombo L
    Int J Pharm; 2016 Feb; 499(1-2):205-216. PubMed ID: 26707412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of zein nanoparticles by using solution-enhanced dispersion with supercritical CO
    Li S; Zhao Y
    Int J Nanomedicine; 2017; 12():3485-3494. PubMed ID: 28496324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Novel Milling System Using Supercritical Carbon Dioxide for Improvement of Dissolution Characteristics of Water-Poorly Soluble Drugs.
    Fern JC; Nakamura H; Watano S
    Chem Pharm Bull (Tokyo); 2016; 64(12):1720-1725. PubMed ID: 27904081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.
    Salmaso S; Elvassore N; Bertucco A; Caliceti P
    J Pharm Sci; 2009 Feb; 98(2):640-50. PubMed ID: 18484622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility.
    Ubeyitogullari A; Ciftci ON
    Sci Rep; 2019 Dec; 9(1):19112. PubMed ID: 31836788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant solubility of carbon dioxide in Soluplus
    Obaidat R; Alnaief M; Jaeger P
    Pharm Dev Technol; 2018 Sep; 23(7):697-705. PubMed ID: 28375669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical gases for critical issues: CO2 technologies for oral drug delivery.
    Danan H; Esposito P
    Ther Deliv; 2014 Feb; 5(2):205-32. PubMed ID: 24483197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modern drug delivery strategies applied to natural active compounds.
    Puglia C; Lauro MR; Tirendi GG; Fassari GE; Carbone C; Bonina F; Puglisi G
    Expert Opin Drug Deliv; 2017 Jun; 14(6):755-768. PubMed ID: 27606793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.
    Abuzar SM; Hyun SM; Kim JH; Park HJ; Kim MS; Park JS; Hwang SJ
    Int J Pharm; 2018 Mar; 538(1-2):1-13. PubMed ID: 29278733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.
    Wang JK; Luo B; Guneta V; Li L; Foo SEM; Dai Y; Tan TTY; Tan NS; Choong C; Wong MTC
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():349-358. PubMed ID: 28415472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release.
    Thote AJ; Gupta RB
    Nanomedicine; 2005 Mar; 1(1):85-90. PubMed ID: 17292062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents.
    Bilia AR; Piazzini V; Risaliti L; Vanti G; Casamonti M; Wang M; Bergonzi MC
    Curr Med Chem; 2019; 26(24):4631-4656. PubMed ID: 30381065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.