These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 30324951)

  • 1. Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons.
    Chen J; Zhang L; Zhang L; Zheng X; Xiao L; Jia S; Wang J
    Phys Chem Chem Phys; 2018 Nov; 20(41):26744-26751. PubMed ID: 30324951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust generation of half-metallic transport and pure spin current with photogalvanic effect in zigzag silicene nanoribbons.
    Jiang P; Kang L; Tao X; Cao N; Hao H; Zheng X; Zhang L; Zeng Z
    J Phys Condens Matter; 2019 Dec; 31(49):495701. PubMed ID: 31437823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pure spin current and fully spin-polarized current induced by the photogalvanic effect and spin-Seebeck effect in halogen-decorated phosphorene.
    Zheng Z; Zhu L; Cao Z; Guo X; Wang Y; Yao K
    Phys Chem Chem Phys; 2023 Feb; 25(5):3979-3985. PubMed ID: 36648405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin-dependent transport properties of zigzag phosphorene nanoribbons with oxygen-saturated edges.
    Rahman M; Zhou KC; Xia QL; Nie YZ; Guo GH
    Phys Chem Chem Phys; 2017 Sep; 19(37):25319-25323. PubMed ID: 28890956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An electrically switchable anti-ferroelectric bilayer In
    Yang Y; Zhang L; Chen J; Zheng X; Zhang L; Xiao L; Jia S
    Nanoscale; 2021 May; 13(18):8555-8561. PubMed ID: 33912881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating pure spin current with spin-dependent Seebeck effect in ferromagnetic zigzag graphene nanoribbons.
    Zhou Y; Zheng X
    J Phys Condens Matter; 2019 Aug; 31(31):315301. PubMed ID: 31022711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Control of Circular Photogalvanic Spin-Valley Photocurrent in a Monolayer Semiconductor.
    Liu L; Lenferink EJ; Wei G; Stanev TK; Speiser N; Stern NP
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3334-3341. PubMed ID: 30582322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon phosphide nanoribbons with spatial inversion symmetry: robust generators of pure spin current with a photogalvanic effect.
    Tao X; Jiang P; Dong Y; Yang X; Zheng X; Liu Y
    Phys Chem Chem Phys; 2022 Jul; 24(28):17131-17139. PubMed ID: 35791912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field induced pure spin-photo current in zigzag stanene and germanene nanoribbons.
    Rahimi F; Phirouznia A
    Sci Rep; 2022 May; 12(1):7800. PubMed ID: 35551220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the formation of Stone-Wales defects on the electronic and magnetic properties of silicon carbide nanoribbons: a first-principles investigation.
    Guan J; Yu G; Ding X; Chen W; Shi Z; Huang X; Sun C
    Chemphyschem; 2013 Aug; 14(12):2841-52. PubMed ID: 23794368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realizing pure spin current by the photogalvanic effect in armchair graphene nanoribbons with nano-constriction engineering.
    Li Y; Shang X; Zhou YH; Zheng X
    Phys Chem Chem Phys; 2023 Jan; 25(4):2890-2896. PubMed ID: 36633089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorbing the 3d-transition metal atoms to effectively modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
    Li H; Chen W; Shen X; Liu J; Huang X; Yu G
    Phys Chem Chem Phys; 2017 Feb; 19(5):3694-3705. PubMed ID: 28094365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The donor/acceptor edge-modification: an effective strategy to modulate the electronic and magnetic behaviors of zigzag silicon carbon nanoribbons.
    Ding X; Yu G; Huang X; Chen W
    Phys Chem Chem Phys; 2013 Nov; 15(41):18039-47. PubMed ID: 24060960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PT-Symmetry-Enabled Spin Circular Photogalvanic Effect in Antiferromagnetic Insulators.
    Fei R; Song W; Pusey-Nazzaro L; Yang L
    Phys Rev Lett; 2021 Nov; 127(20):207402. PubMed ID: 34860066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular charge transfer by adsorbing TCNQ/TTF molecules via π-π interaction: a simple and effective strategy to modulate the electronic and magnetic behaviors of zigzag SiC nanoribbons.
    Liu D; Yu G; Sun Y; Huang X; Guan J; Zhang H; Li H; Chen W
    Phys Chem Chem Phys; 2015 Jan; 17(2):941-50. PubMed ID: 25407886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons.
    Yang XF; Zhou WQ; Hong XK; Liu YS; Wang XF; Feng JF
    J Chem Phys; 2015 Jan; 142(2):024706. PubMed ID: 25591376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust pure spin current induced by the photogalvanic effect in half-silicane with spatial inversion symmetry.
    Fu Z; Yan P; Li J; Zhang S; He C; Ouyang T; Zhang C; Tang C; Zhong J
    Nanoscale; 2022 Aug; 14(31):11316-11322. PubMed ID: 35880841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkable negative differential resistance and perfect spin-filtering effects of the indium triphosphide (InP
    Zhang S; Xie Y; Hu Y; Niu X; Wang Y
    Phys Chem Chem Phys; 2018 Nov; 20(46):29440-29445. PubMed ID: 30452033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.