BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30325110)

  • 21. Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures.
    Jacott CN; Boden SA
    J Exp Bot; 2020 Oct; 71(19):5740-5751. PubMed ID: 32667992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MADS1 maintains barley spike morphology at high ambient temperatures.
    Li G; Kuijer HNJ; Yang X; Liu H; Shen C; Shi J; Betts N; Tucker MR; Liang W; Waugh R; Burton RA; Zhang D
    Nat Plants; 2021 Aug; 7(8):1093-1107. PubMed ID: 34183784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA-resistant alleles of
    Dixon LE; Pasquariello M; Badgami R; Levin KA; Poschet G; Ng PQ; Orford S; Chayut N; Adamski NM; Brinton J; Simmonds J; Steuernagel B; Searle IR; Uauy C; Boden SA
    Sci Adv; 2022 May; 8(19):eabn5907. PubMed ID: 35544571
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SiMADS34, an E-class MADS-box transcription factor, regulates inflorescence architecture and grain yield in Setaria italica.
    Hussin SH; Wang H; Tang S; Zhi H; Tang C; Zhang W; Jia G; Diao X
    Plant Mol Biol; 2021 Mar; 105(4-5):419-434. PubMed ID: 33231834
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species.
    Goyal RK; Tulpan D; Chomistek N; González-Peña Fundora D; West C; Ellis BE; Frick M; Laroche A; Foroud NA
    BMC Genomics; 2018 Mar; 19(1):178. PubMed ID: 29506469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular and comparative mapping of genes governing spike compactness from wild emmer wheat.
    Faris JD; Zhang Z; Garvin DF; Xu SS
    Mol Genet Genomics; 2014 Aug; 289(4):641-51. PubMed ID: 24652470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unlocking Triticeae genomics to sustainably feed the future.
    Mochida K; Shinozaki K
    Plant Cell Physiol; 2013 Dec; 54(12):1931-50. PubMed ID: 24204022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and functional divergence of the Mpc1 genes in wheat and barley.
    Strygina KV; Khlestkina EK
    BMC Evol Biol; 2019 Feb; 19(Suppl 1):45. PubMed ID: 30813913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Major genes determining yield-related traits in wheat and barley.
    Nadolska-Orczyk A; Rajchel IK; Orczyk W; Gasparis S
    Theor Appl Genet; 2017 Jun; 130(6):1081-1098. PubMed ID: 28314933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability.
    Liu H; Wang K; Tang H; Gong Q; Du L; Pei X; Ye X
    J Genet Genomics; 2020 Sep; 47(9):563-575. PubMed ID: 33187879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide identification of loci modifying spike-branching in tetraploid wheat.
    Wolde GM; Schreiber M; Trautewig C; Himmelbach A; Sakuma S; Mascher M; Schnurbusch T
    Theor Appl Genet; 2021 Jul; 134(7):1925-1943. PubMed ID: 33961064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic insights into morphometric inflorescence traits of wheat.
    Wolde GM; Trautewig C; Mascher M; Schnurbusch T
    Theor Appl Genet; 2019 Jun; 132(6):1661-1676. PubMed ID: 30762083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley.
    Digel B; Pankin A; von Korff M
    Plant Cell; 2015 Sep; 27(9):2318-34. PubMed ID: 26307377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crop reproductive meristems in the genomic era: a brief overview.
    Caselli F; Zanarello F; Kater MM; Battaglia R; Gregis V
    Biochem Soc Trans; 2020 Jun; 48(3):853-865. PubMed ID: 32573650
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TriMEDB: a database to integrate transcribed markers and facilitate genetic studies of the tribe Triticeae.
    Mochida K; Saisho D; Yoshida T; Sakurai T; Shinozaki K
    BMC Plant Biol; 2008 Jun; 8():72. PubMed ID: 18590523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of Deeper Rooting 1-like homoeologs in wheat entails the C-terminus mutations as well as gain and loss of auxin response elements.
    Ashraf A; Rehman OU; Muzammil S; Léon J; Naz AA; Rasool F; Ali GM; Zafar Y; Khan MR
    PLoS One; 2019; 14(4):e0214145. PubMed ID: 30947257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication.
    Huang Y; Zhao S; Fu Y; Sun H; Ma X; Tan L; Liu F; Sun X; Sun H; Gu P; Xie D; Sun C; Zhu Z
    Plant J; 2018 Nov; 96(4):716-733. PubMed ID: 30101570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction between row-type genes in barley controls meristem determinacy and reveals novel routes to improved grain.
    Zwirek M; Waugh R; McKim SM
    New Phytol; 2019 Mar; 221(4):1950-1965. PubMed ID: 30339269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content.
    Danilova TV; Poland J; Friebe B
    Theor Appl Genet; 2019 Nov; 132(11):3129-3141. PubMed ID: 31535163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wheat
    Li C; Lin H; Chen A; Lau M; Jernstedt J; Dubcovsky J
    Development; 2019 Jul; 146(14):. PubMed ID: 31337701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.