BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30325368)

  • 21. Facile synthesis of terminal-alkyne bioorthogonal molecules for live -cell surface-enhanced Raman scattering imaging through Au-core and silver/dopamine-shell nanotags.
    Chen M; Zhang L; Yang B; Gao M; Zhang X
    Anal Bioanal Chem; 2018 Mar; 410(8):2203-2210. PubMed ID: 29396584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of inclusion depth in ex vivo animal tissues using surface enhanced deep Raman spectroscopy.
    Mosca S; Dey P; Tabish TA; Palombo F; Stone N; Matousek P
    J Biophotonics; 2020 Jan; 13(1):e201960092. PubMed ID: 31595708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An investigation of the surface-enhanced Raman scattering (SERS) effect from a new substrate of silver-modified silver electrode.
    Wen R; Fang Y
    J Colloid Interface Sci; 2005 Dec; 292(2):469-75. PubMed ID: 16051260
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-color Raman nanotags for tumor cell biomarker detection.
    Nyagilo J; Xiao M; Sun X; Davé DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6314-7. PubMed ID: 19963924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Breast cancer detection based on serum sample surface enhanced Raman spectroscopy.
    Vargas-Obieta E; Martínez-Espinosa JC; Martínez-Zerega BE; Jave-Suárez LF; Aguilar-Lemarroy A; González-Solís JL
    Lasers Med Sci; 2016 Sep; 31(7):1317-24. PubMed ID: 27289243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Critical review of surface-enhanced Raman spectroscopy applications in the pharmaceutical field.
    Cailletaud J; De Bleye C; Dumont E; Sacré PY; Netchacovitch L; Gut Y; Boiret M; Ginot YM; Hubert P; Ziemons E
    J Pharm Biomed Anal; 2018 Jan; 147():458-472. PubMed ID: 28688617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy.
    Zavaleta CL; Smith BR; Walton I; Doering W; Davis G; Shojaei B; Natan MJ; Gambhir SS
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13511-6. PubMed ID: 19666578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-invasive depth determination of inclusion in biological tissues using spatially offset Raman spectroscopy with external calibration.
    Mosca S; Dey P; Salimi M; Palombo F; Stone N; Matousek P
    Analyst; 2020 Nov; 145(23):7623-7629. PubMed ID: 33000803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface enhanced deep Raman detection of cancer tumour through 71 mm of heterogeneous tissue.
    Dey P; Vaideanu A; Mosca S; Salimi M; Gardner B; Palombo F; Uchegbu I; Baumberg J; Schatzlein A; Matousek P; Stone N
    Nanotheranostics; 2022; 6(3):337-349. PubMed ID: 35721665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct monitoring of light mediated hyperthermia induced within mammalian tissues using surface enhanced spatially offset Raman spectroscopy (T-SESORS).
    Gardner B; Matousek P; Stone N
    Analyst; 2019 May; 144(11):3552-3555. PubMed ID: 31049496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Vivo Surface-Enhanced Transmission Raman Spectroscopy under Maximum Permissible Exposure: Toward Photosafe Detection of Deep-Seated Tumors.
    Zhang Y; Chen R; Liu F; Miao P; Lin L; Ye J
    Small Methods; 2023 Feb; 7(2):e2201334. PubMed ID: 36572635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe.
    Dinish US; Balasundaram G; Chang YT; Olivo M
    J Biophotonics; 2014 Nov; 7(11-12):956-65. PubMed ID: 23963680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AuNPs@mesoSiO2 composites for SERS detection of DTNB molecule.
    Lin CC; Chang CW
    Biosens Bioelectron; 2014 Jan; 51():297-303. PubMed ID: 23978453
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved molecular fingerprint analysis employing multi-branched gold nanoparticles in conjunction with surface-enhanced Raman scattering.
    Johnston J; Taylor EN; Gilbert RJ; Webster TJ
    Int J Nanomedicine; 2016; 11():45-52. PubMed ID: 26730189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine.
    Canetta E
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical scattering artifacts observed in the development of multiplexed surface enhanced Raman spectroscopy nanotag immunoassays.
    Noble J; Attree S; Horgan A; Knight A; Kumarswami N; Porter R; Worsley G
    Anal Chem; 2012 Oct; 84(19):8246-52. PubMed ID: 22947112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO
    Zhou W; Yin BC; Ye BC
    Biosens Bioelectron; 2017 Jan; 87():187-194. PubMed ID: 27551999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitive and Multiplexed SERS Nanotags for the Detection of Cytokines Secreted by Lymphoma.
    Li D; Jiang L; Piper JA; Maksymov IS; Greentree AD; Wang E; Wang Y
    ACS Sens; 2019 Sep; 4(9):2507-2514. PubMed ID: 31436434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.