BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30325521)

  • 1. Characterization of the fungitoxic activity on Botrytis cinerea of the aristolochic acids I and II.
    Melo R; Sanhueza L; Mendoza L; Cotoras M
    Lett Appl Microbiol; 2019 Jan; 68(1):48-55. PubMed ID: 30325521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal activity of resveratrol against Botrytis cinerea is improved using 2-furyl derivatives.
    Caruso F; Mendoza L; Castro P; Cotoras M; Aguirre M; Matsuhiro B; Isaacs M; Rossi M; Viglianti A; Antonioletti R
    PLoS One; 2011; 6(10):e25421. PubMed ID: 22022392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detoxification Mechanism of 8,8-Dimethyl-3-[(
    Mendoza L; Vivanco M; Melo R; Castro P; Araya-Maturana R; Cotoras M
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alteration of oxidative phosphorylation as a possible mechanism of the antifungal action of p-coumaric acid against Botrytis cinerea.
    Morales J; Mendoza L; Cotoras M
    J Appl Microbiol; 2017 Oct; 123(4):969-976. PubMed ID: 28714193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro sensitivity of Botrytis cinerea to anthraquinone and anthrahydroquinone derivatives.
    Mendoza L; Araya-Maturana R; Cardona W; Delgado-Castro T; García C; Lagos C; Cotoras M
    J Agric Food Chem; 2005 Dec; 53(26):10080-4. PubMed ID: 16366698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action.
    Robles-Kelly C; Rubio J; Thomas M; Sedán C; Martinez R; Olea AF; Carrasco H; Taborga L; Silva-Moreno E
    Pestic Biochem Physiol; 2017 Sep; 141():50-56. PubMed ID: 28911740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea.
    Shao X; Cheng S; Wang H; Yu D; Mungai C
    J Appl Microbiol; 2013 Jun; 114(6):1642-9. PubMed ID: 23495848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of linear Geranylphenols and their effect on mycelial growth of plant pathogen Botrytis cinerea.
    Espinoza L; Taborga L; Díaz K; Olea AF; Peña-Cortés H
    Molecules; 2014 Jan; 19(2):1512-26. PubMed ID: 24473210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antifungal activity of proteolytic fraction (P1G10) from (Vasconcellea cundinamarcensis) latex inhibit cell growth and cell wall integrity in Botrytis cinerea.
    Torres-Ossandón MJ; Vega-Gálvez A; Salas CE; Rubio J; Silva-Moreno E; Castillo L
    Int J Food Microbiol; 2019 Jan; 289():7-16. PubMed ID: 30193124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea.
    Zhang Y; Wang C; Su P; Liao X
    PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activities of secondary metabolites isolated from liquid fermentations of Stereum hirsutum (Sh134-11) against Botrytis cinerea (grey mould agent).
    Aqueveque P; Céspedes CL; Becerra J; Aranda M; Sterner O
    Food Chem Toxicol; 2017 Nov; 109(Pt 2):1048-1054. PubMed ID: 28528973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungicidal Effect of Pyraclostrobin against
    Xiong H; Liu X; Xu J; Zhang X; Luan S; Huang Q
    J Agric Food Chem; 2020 Sep; 68(39):10975-10983. PubMed ID: 32857513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory activity of tea polyphenol and Hanseniaspora uvarum against Botrytis cinerea infections.
    Liu HM; Guo JH; Cheng YJ; Liu P; Long CA; Deng BX
    Lett Appl Microbiol; 2010 Sep; 51(3):258-63. PubMed ID: 20633212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ozone treatment on Botrytis cinerea and Sclerotinia sclerotiorum in relation to horticultural product quality.
    Sharpe D; Fan L; McRae K; Walker B; MacKay R; Doucette C
    J Food Sci; 2009 Aug; 74(6):M250-7. PubMed ID: 19723209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in Botrytis cinerea.
    Silva-Moreno E; Brito-Echeverría J; López M; Ríos J; Balic I; Campos-Vargas R; Polanco R
    World J Microbiol Biotechnol; 2016 May; 32(5):74. PubMed ID: 27038944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal effectiveness of fungicide and peroxyacetic acid mixture on the growth of Botrytis cinerea.
    Ayoub F; Ben Oujji N; Chebli B; Ayoub M; Hafidi A; Salghi R; Jodeh S
    Microb Pathog; 2017 Apr; 105():74-80. PubMed ID: 28192222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester.
    Vicedo B; de la O Leyva M; Flors V; Finiti I; Del Amo G; Walters D; Real MD; García-Agustín P; González-Bosch C
    Arch Microbiol; 2006 Jan; 184(5):316-26. PubMed ID: 16261314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.