These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3032630)

  • 1. Ribonucleoside uptake and phosphorylation during fertilization and early development of the sea-urchin, Strongylocentrotus purpuratus.
    Killian CE; Nishioka D
    Eur J Biochem; 1987 May; 165(1):91-8. PubMed ID: 3032630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of the specific activity of the nucleoside triphosphate pool of sea-urchin embryos following 8-3H-guanosine administration.
    Arezzo F
    Differentiation; 1987; 35(1):1-5. PubMed ID: 3428509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased uptake of thymidine in the activation of sea urchin eggs. II. Cooperativity with phosphorylation, involvement of the cortex, and partial localization of the kinases.
    McGwin NF; Morton RW; Nishioka D
    Exp Cell Res; 1983 Apr; 145(1):115-26. PubMed ID: 6303815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translational control in early sea urchin embryogenesis: initiation factor eIF4F stimulates protein synthesis in lysates from unfertilized eggs of Strongylocentrotus purpuratus.
    Lopo AC; MacMillan S; Hershey JW
    Biochemistry; 1988 Jan; 27(1):351-7. PubMed ID: 3349037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine protein kinase activity during embryogenesis.
    Dasgupta JD; Garbers DL
    J Biol Chem; 1983 May; 258(10):6174-8. PubMed ID: 6602127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and metabolism of nucleosides by embryos of the sea urchin Strongylocentrotus purpuratus.
    Schneider EG; Whitten DJ
    Exp Cell Res; 1987 Jan; 168(1):1-14. PubMed ID: 3096750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of 13C, 15N-labeled nucleosides and measurement of RNA synthesis and turnover in sea urchin embryos.
    Grainger RM; Wilt FH
    J Mol Biol; 1976 Jul; 104(3):589-601. PubMed ID: 950669
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium-mediated inactivation of the MAP kinase pathway in sea urchin eggs at fertilization.
    Kumano M; Carroll DJ; Denu JM; Foltz KR
    Dev Biol; 2001 Aug; 236(1):244-57. PubMed ID: 11456458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered in vitro phosphorylation of specific proteins accompanies fertilization of Strongylocentrotus purpuratus eggs.
    Keller C; Gundersen G; Shapiro BM
    Dev Biol; 1980 Jan; 74(1):86-100. PubMed ID: 6985596
    [No Abstract]   [Full Text] [Related]  

  • 10. Translational regulation of histone synthesis in the sea urchin strongylocentrotus purpuratus.
    Herlands L; Allfrey VG; Poccia D
    J Cell Biol; 1982 Jul; 94(1):219-23. PubMed ID: 7119016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclin E and its associated cdk activity do not cycle during early embryogenesis of the sea Urchin.
    Sumerel JL; Moore JC; Schnackenberg BJ; Nichols JA; Canman JC; Wessel GM; Marzluff WF
    Dev Biol; 2001 Jun; 234(2):425-40. PubMed ID: 11397011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of hydrodynamic shear stress on fertilization and early development of the purple sea urchin Strongylocentrotus purpuratus.
    Mead KS; Denny MW
    Biol Bull; 1995; 188(1):46-56. PubMed ID: 7696387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein tyrosine kinase activity of eggs of the sea urchin Strongylocentrotus purpuratus: the regulation of its increase after fertilization.
    Satoh N; Garbers DL
    Dev Biol; 1985 Oct; 111(2):515-9. PubMed ID: 2412915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein tyrosine phosphorylation during sea urchin fertilization: microtubule dynamics require tyrosine kinase activity.
    Wright SJ; Schatten G
    Cell Motil Cytoskeleton; 1995; 30(2):122-35. PubMed ID: 7606805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fertilization results in increased tyrosine phosphorylation of egg proteins.
    Ribot HD; Eisenman EA; Kinsey WH
    J Biol Chem; 1984 Apr; 259(8):5333-8. PubMed ID: 6538877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonucleoside metabolism by mouse oocytes: metabolic cooperativity between the fully grown oocyte and cumulus cells.
    Heller DT; Schultz RM
    J Exp Zool; 1980 Dec; 214(3):355-64. PubMed ID: 7276886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of uridine triphosphate in the phosphorylation of 1-beta-D-arabinofuranosylcytosine by Ehrlich ascites tumor cells.
    White JC; Hines LH
    Cancer Res; 1987 Apr; 47(7):1820-4. PubMed ID: 3028615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of Ribonucleoside Mono-, Di-, and Triphosphates Using an Engineered Nanopore.
    Wang Y; Fan P; Zhang S; Wang L; Li X; Jia W; Liu Y; Wang K; Du X; Zhang P; Huang S
    ACS Nano; 2022 Dec; 16(12):21356-21365. PubMed ID: 36475606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein tyrosine phosphorylation in response to fertilization.
    Peaucellier G; Veno PA; Kinsey WH
    J Biol Chem; 1988 Sep; 263(27):13806-11. PubMed ID: 2458352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged incubation in seawater induces a DNA-dependent protein phosphorylation activity in Arbacia punctulata eggs.
    Kanungo J
    Biochem Biophys Res Commun; 2002 Jun; 294(3):667-71. PubMed ID: 12056821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.