These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30326555)

  • 1. Fabrication of ZnO/Red Phosphorus Heterostructure for Effective Photocatalytic H₂ Evolution from Water Splitting.
    Chen J; Huang S; Long Y; Wu J; Li H; Li Z; Zeng YJ; Ruan S
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30326555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical prediction of the electronic structure, optical properties and photocatalytic performance of type-I SiS/GeC and type-II SiS/ZnO heterostructures.
    Ullah SS; Din HU; Ahmad S; Alam Q; Sardar S; Amin B; Farooq M; Nguyen CQ; Nguyen CV
    RSC Adv; 2023 Mar; 13(11):7436-7442. PubMed ID: 36895771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Photocatalyst Based on a CdS Quantum Dots/ZnO Nanosheets 0D/2D Heterojunction for Hydrogen Evolution from Water Splitting.
    Ma D; Shi JW; Zou Y; Fan Z; Ji X; Niu C
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25377-25386. PubMed ID: 28696670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of phosphorus nanostructures/TiO
    Wang J; Zhang D; Deng J; Chen S
    J Colloid Interface Sci; 2018 Apr; 516():215-223. PubMed ID: 29408107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar light active silver/iron oxide/zinc oxide heterostructure for photodegradation of ciprofloxacin, transformation products and antibacterial activity.
    Kaur A; Anderson WA; Tanvir S; Kansal SK
    J Colloid Interface Sci; 2019 Dec; 557():236-253. PubMed ID: 31521973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
    Trang TNQ; Phan TB; Nam ND; Thu VTH
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS2 nanosheet-coated ZnO heterostructure photocatalyst.
    Yuan YJ; Wang F; Hu B; Lu HW; Yu ZT; Zou ZG
    Dalton Trans; 2015 Jun; 44(24):10997-1003. PubMed ID: 25989095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on photocatalytic performance of ZnO/C
    Liu M; Tang Y; Yao H; Bai L; Song J; Ma B
    Front Chem; 2022; 10():1048437. PubMed ID: 36339040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of selective interface of ZnO/CdS heterostructures for more efficient photocatalytic hydrogen evolution.
    Ma X; Zhao F; Qiang Q; Liu T; Wang Y
    Dalton Trans; 2018 Sep; 47(35):12162-12171. PubMed ID: 30095139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous honeycomb-like NiSe
    Jia J; Bai X; Zhang Q; Hu X; Liu E; Fan J
    Nanoscale; 2020 Mar; 12(9):5636-5651. PubMed ID: 32101210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of II-type and Z-scheme binding structure in P-doped graphitic carbon nitride loaded with ZnO and ZnTCPP boosting photocatalytic hydrogen evolution.
    Xu X; Feng X; Wang W; Song K; Ma D; Zhou Y; Shi JW
    J Colloid Interface Sci; 2023 Dec; 651():669-677. PubMed ID: 37562308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterointerface Engineering of ZnO/CdS Heterostructures through ZnS Layers for Photocatalytic Water Splitting.
    Guo X; Liu X; Yan J; Liu SF
    Chemistry; 2022 Dec; 28(69):e202202662. PubMed ID: 36323635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial elaborating In
    Liang S; Jin D; Fu Y; Lin Q; Zhang R; Wang X
    J Colloid Interface Sci; 2023 Apr; 635():128-137. PubMed ID: 36584613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect-Enriched ZnO/ZnS Heterostructures Derived from Hydrozincite Intermediates for Hydrogen Evolution under Visible Light.
    Zhi Y; Yi Y; Deng C; Zhang Q; Yang S; Peng F
    ChemSusChem; 2022 Sep; 15(18):e202200860. PubMed ID: 35734960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Assembly of SnO2/ZnO Nanostructures for Enhanced Photocatalytic Performance.
    Zhu L; Hong M; Wei Ho G
    Sci Rep; 2015 Jun; 5():11609. PubMed ID: 26109295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution.
    Wang J; Wang G; Jiang J; Wan Z; Su Y; Tang H
    J Colloid Interface Sci; 2020 Mar; 564():322-332. PubMed ID: 31918200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of ZnO/Sc
    Tang Y; Lu Y; Ma B; Song J; Bai L; Wang Y; Chen Y; Liu M
    Molecules; 2024 Sep; 29(19):. PubMed ID: 39407568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationally embedded zinc oxide nanospheres serving as electron transport channels in bismuth vanadate/zinc oxide heterostructures for improved photoelectrochemical efficiency.
    Li J; Jin B; Jiao Z
    J Colloid Interface Sci; 2021 Jun; 592():127-134. PubMed ID: 33647561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Growth Facilitating the Piezo-Photocatalytic Effect of Zn
    Shen C; Wang X; Wei Y; Chen F; Zhuo Z; Cai M; Li M; Sun S
    Langmuir; 2023 May; 39(21):7328-7336. PubMed ID: 37196195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient visible light photocatalysis of novel CuS/ZnO heterostructure nanowire arrays.
    Lee M; Yong K
    Nanotechnology; 2012 May; 23(19):194014. PubMed ID: 22538200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.