These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30326702)

  • 1. Minimal attachment of
    Pingle H; Wang PY; Cavaliere R; Whitchurch CB; Thissen H; Kingshott P
    Biointerphases; 2018 Oct; 13(6):06E405. PubMed ID: 30326702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.
    Pingle H; Wang PY; Thissen H; McArthur S; Kingshott P
    Biointerphases; 2015 Dec; 10(4):04A309. PubMed ID: 26634448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal-Based Topographies.
    Pingle H; Wang PY; Thissen H; Kingshott P
    Small; 2018 Apr; 14(14):e1703574. PubMed ID: 29484803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.
    Gallarato LA; Mulko LE; Dardanelli MS; Barbero CA; Acevedo DF; Yslas EI
    Colloids Surf B Biointerfaces; 2017 Feb; 150():1-7. PubMed ID: 27863264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa resistance of monosaccharide-functionalized glass surfaces.
    Scalabrini M; Hamon J; Linossier I; Ferrières V; Réhel K
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110383. PubMed ID: 31450058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.
    Zhang J; Huang J; Say C; Dorit RL; Queeney KT
    J Colloid Interface Sci; 2018 Jun; 519():203-213. PubMed ID: 29500992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-eluting, surface-bound enzymes disrupt surface attachment of bacteria by continuous biofilm polysaccharide degradation.
    Asker D; Awad TS; Baker P; Howell PL; Hatton BD
    Biomaterials; 2018 Jun; 167():168-176. PubMed ID: 29571052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces.
    Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP
    Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association of some Campylobacter jejuni with Pseudomonas aeruginosa biofilms increases attachment under conditions mimicking those in the environment.
    Teh AHT; Lee SM; Dykes GA
    PLoS One; 2019; 14(4):e0215275. PubMed ID: 30970009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.
    Kannan A; Karumanchi SL; Krishna V; Thiruvengadam K; Ramalingam S; Gautam P
    Scanning; 2014; 36(5):551-3. PubMed ID: 25042006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms.
    Okshevsky M; Meyer RL
    Crit Rev Microbiol; 2015; 41(3):341-52. PubMed ID: 24303798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.
    Nunes Filho A; Aires MM; Braz DC; Hinrichs R; Macedo AJ; Alves C
    Artif Organs; 2018 Feb; 42(2):193-199. PubMed ID: 29436026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiadhesive activity of ulvan polysaccharides covalently immobilized onto titanium surface.
    Gadenne V; Lebrun L; Jouenne T; Thebault P
    Colloids Surf B Biointerfaces; 2013 Dec; 112():229-36. PubMed ID: 23994748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms.
    Saunders SH; Tse ECM; Yates MD; Otero FJ; Trammell SA; Stemp EDA; Barton JK; Tender LM; Newman DK
    Cell; 2020 Aug; 182(4):919-932.e19. PubMed ID: 32763156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudomonas aeruginosa attachment and biofilm development in dynamic environments.
    Ramsey MM; Whiteley M
    Mol Microbiol; 2004 Aug; 53(4):1075-87. PubMed ID: 15306012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study.
    Tang L; Schramm A; Neu TR; Revsbech NP; Meyer RL
    FEMS Microbiol Ecol; 2013 Dec; 86(3):394-403. PubMed ID: 23786537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa.
    Toutain CM; Caizza NC; Zegans ME; O'Toole GA
    Res Microbiol; 2007 Jun; 158(5):471-7. PubMed ID: 17533122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Fine Particulate Matter on
    Woo SH; Lee SM; Park KC; Park GN; Cho B; Kim I; Kim J; Hong S
    Biomed Res Int; 2018; 2018():6287932. PubMed ID: 30069474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the population dynamics within a Pseudomonas aeruginosa biofilm using a flow based biofilm model system and flow cytometric evaluation of cellular physiology.
    Wojciech J; Kamila M; Wojciech B
    Biofouling; 2018 Sep; 34(8):835-850. PubMed ID: 30332894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.