These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30326997)

  • 1. Recent Developments in Counter Electrode Materials for Quantum Dot-Sensitized Solar Cells.
    Shen C
    J Nanosci Nanotechnol; 2019 Jan; 19(1):1-11. PubMed ID: 30326997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells.
    Shen C; Fichou D; Wang Q
    Chem Asian J; 2016 Apr; 11(8):1183-93. PubMed ID: 26879244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum-dot-sensitized solar cells.
    Rühle S; Shalom M; Zaban A
    Chemphyschem; 2010 Aug; 11(11):2290-304. PubMed ID: 20632355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dot-sensitized solar cells.
    Pan Z; Rao H; Mora-Seró I; Bisquert J; Zhong X
    Chem Soc Rev; 2018 Oct; 47(20):7659-7702. PubMed ID: 30209490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor quantum dot-sensitized solar cells.
    Tian J; Cao G
    Nano Rev; 2013 Oct; 4():. PubMed ID: 24191178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells.
    Ganapathy V; Kong EH; Park YC; Jang HM; Rhee SW
    Nanoscale; 2014 Mar; 6(6):3296-301. PubMed ID: 24509529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells.
    Soo Kang J; Park MA; Kim JY; Ha Park S; Young Chung D; Yu SH; Kim J; Park J; Choi JW; Jae Lee K; Jeong J; Jae Ko M; Ahn KS; Sung YE
    Sci Rep; 2015 May; 5():10450. PubMed ID: 25994801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances and Challenges in Light Conversion Phosphor Materials for Third-Generation Quantum-Dot-Sensitized Photovoltaics.
    Sekar R; Ravitchandiran A; Angaiah S
    ACS Omega; 2022 Oct; 7(40):35351-35360. PubMed ID: 36249370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices.
    Zhang Y; Wu G; Liu F; Ding C; Zou Z; Shen Q
    Chem Soc Rev; 2020 Jan; 49(1):49-84. PubMed ID: 31825404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties.
    Toyoda T; Shen Q
    J Phys Chem Lett; 2012 Jul; 3(14):1885-93. PubMed ID: 26292009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solar Paint from TiO
    Shen G; Du Z; Pan Z; Du J; Zhong X
    ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Cost Counter-Electrode Materials for Dye-Sensitized and Perovskite Solar Cells.
    Li GR; Gao XP
    Adv Mater; 2020 Jan; 32(3):e1806478. PubMed ID: 31116898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells.
    Peng W; Du J; Pan Z; Nakazawa N; Sun J; Du Z; Shen G; Yu J; Hu JS; Shen Q; Zhong X
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5328-5336. PubMed ID: 28092935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface Engineering in Quantum-Dot-Sensitized Solar Cells.
    Halder G; Ghosh D; Ali MY; Sahasrabudhe A; Bhattacharyya S
    Langmuir; 2018 Sep; 34(35):10197-10216. PubMed ID: 29584956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ternary CuBiS2 nanoparticles as a sensitizer for quantum dot solar cells.
    Suriyawong N; Aragaw B; Shi JB; Lee MW
    J Colloid Interface Sci; 2016 Jul; 473():60-5. PubMed ID: 27054767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO
    Chen L; Chen W; Li J; Wang J; Wang E
    ChemSusChem; 2017 Jul; 10(14):2945-2954. PubMed ID: 28544657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells.
    Zhao K; Pan Z; Zhong X
    J Phys Chem Lett; 2016 Feb; 7(3):406-17. PubMed ID: 26758605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.
    Faber MS; Park K; Cabán-Acevedo M; Santra PK; Jin S
    J Phys Chem Lett; 2013 Jun; 4(11):1843-9. PubMed ID: 26283119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects.
    Hod I; Zaban A
    Langmuir; 2014 Jul; 30(25):7264-73. PubMed ID: 24369734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12.
    Jiao S; Du J; Du Z; Long D; Jiang W; Pan Z; Li Y; Zhong X
    J Phys Chem Lett; 2017 Feb; 8(3):559-564. PubMed ID: 28075601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.