These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30327010)

  • 1. Understanding the Impact of K-Doping on the Structure and Performance of LiFePO₄/C Cathode Materials.
    Chen Z; Zhang Z; Zhao Q; Duan J; Zhu H
    J Nanosci Nanotechnol; 2019 Jan; 19(1):119-124. PubMed ID: 30327010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Cycling Stability and Fast Charge-Discharge Performance of Cobalt-Free Lithium-Rich Oxides by Magnesium-Doping.
    Yi TF; Li YM; Yang SY; Zhu YR; Xie Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32349-32359. PubMed ID: 27933831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electrochemical Properties of Zr
    Lu Y; Pang M; Shi S; Ye Q; Tian Z; Wang T
    Sci Rep; 2018 Feb; 8(1):2981. PubMed ID: 29445229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced electrochemical properties of LiFePO4 by Mo-substitution and graphitic carbon-coating via a facile and fast microwave-assisted solid-state reaction.
    Li D; Huang Y; Sharma N; Chen Z; Jia D; Guo Z
    Phys Chem Chem Phys; 2012 Mar; 14(10):3634-9. PubMed ID: 22311165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries.
    Zhu Y; Xu Y; Liu Y; Luo C; Wang C
    Nanoscale; 2013 Jan; 5(2):780-7. PubMed ID: 23235803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials.
    Wang L; He X; Sun W; Wang J; Li Y; Fan S
    Nano Lett; 2012 Nov; 12(11):5632-6. PubMed ID: 23074971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnesium-Doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability.
    Wang YX; Shang KH; He W; Ai XP; Cao YL; Yang HX
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):13014-21. PubMed ID: 26011097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring crystal structure and morphology of LiFePO₄/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO₄ seed crystals.
    Han DW; Ryu WH; Kim WK; Lim SJ; Kim YI; Eom JY; Kwon HS
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1342-7. PubMed ID: 23350697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical LiFePO4/C microspheres with high tap density assembled by nanosheets as cathode materials for high-performance Li-ion batteries.
    Wei W; Chen D; Wang R; Guo L
    Nanotechnology; 2012 Nov; 23(47):475401. PubMed ID: 23117189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Role of Dopant Metal Atoms on the Structural and Electronic Properties of Lithium-Rich Li
    Lo WT; Yu C; Leggesse EG; Nachimuthu S; Jiang JC
    J Phys Chem Lett; 2019 Sep; 10(17):4842-4850. PubMed ID: 31393733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of micro-nano hierarchical structured LiFePO₄/C composite with both superior high-rate performance and high tap density.
    Wang M; Yang Y; Zhang Y
    Nanoscale; 2011 Oct; 3(10):4434-9. PubMed ID: 21935524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Nb Doping on Electrochemical Performance of Nanostructured Cation Disordered Li
    Zheng S; Dou A; Su M; Liu Y
    J Nanosci Nanotechnol; 2020 Jan; 20(1):452-459. PubMed ID: 31383193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of
    Pratheeksha PM; Rajeshwari JS; Daniel PJ; Rao TN; Anandan S
    J Nanosci Nanotechnol; 2019 May; 19(5):3002-3011. PubMed ID: 30501812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Cobalt Content in Improving the Low-Temperature Performance of Layered Lithium-Rich Cathode Materials for Lithium-Ion Batteries.
    Kou J; Chen L; Su Y; Bao L; Wang J; Li N; Li W; Wang M; Chen S; Wu F
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17910-8. PubMed ID: 26222273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and Electrochemical Properties of Yb
    Qin SD; Liu YC; Ma H; Guo JH; Zhou YM
    J Nanosci Nanotechnol; 2018 May; 18(5):3433-3440. PubMed ID: 29442849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the high rate capability and cycling stability of LiMn₂O₄ by coating of solid-state electrolyte LiNbO₃.
    Zhang ZJ; Chou SL; Gu QF; Liu HK; Li HJ; Ozawa K; Wang JZ
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22155-65. PubMed ID: 25469550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Rate LiTi2(PO4)3@N-C Composite via Bi-nitrogen Sources Doping.
    Sun D; Xue X; Tang Y; Jing Y; Huang B; Ren Y; Yao Y; Wang H; Cao G
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28337-45. PubMed ID: 26633580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered Lithium-Rich Oxide Nanoparticles Doped with Spinel Phase: Acidic Sucrose-Assistant Synthesis and Excellent Performance as Cathode of Lithium Ion Battery.
    Chen M; Chen D; Liao Y; Zhong X; Li W; Zhang Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4575-84. PubMed ID: 26799282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the Electrochemical Properties of Ti-Doped LiMn
    Zhang Y; Xie H; Jin H; Li X; Zhang Q; Li Y; Li K; Luo F; Li W; Li C
    ACS Omega; 2021 Aug; 6(33):21304-21315. PubMed ID: 34471735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li(0.2)Ni(0.16)Co(0.1)Mn(0.54)]O2 Cathode and Si Anode.
    Ye J; Li YX; Zhang L; Zhang XP; Han M; He P; Zhou HS
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):208-14. PubMed ID: 26651500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.