BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30327115)

  • 1. A cotton thread fluidic device with a wall-jet pencil-drawn paper based dual electrode detector.
    Dossi N; Toniolo R; Terzi F; Sdrigotti N; Tubaro F; Bontempelli G
    Anal Chim Acta; 2018 Dec; 1040():74-80. PubMed ID: 30327115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil.
    Dossi N; Toniolo R; Impellizzieri F; Tubaro F; Bontempelli G; Terzi F; Piccin E
    Anal Chim Acta; 2017 Jan; 950():41-48. PubMed ID: 27916128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple pencil-drawn paper-based devices for one-spot electrochemical detection of electroactive species in oil samples.
    Dossi N; Toniolo R; Terzi F; Piccin E; Bontempelli G
    Electrophoresis; 2015 Aug; 36(16):1830-6. PubMed ID: 25892681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices.
    Dossi N; Toniolo R; Pizzariello A; Impellizzieri F; Piccin E; Bontempelli G
    Electrophoresis; 2013 Jul; 34(14):2085-91. PubMed ID: 23161669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid determination of hydrophilic phenols in olive oil by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes.
    Fernández E; Vidal L; Canals A
    Talanta; 2018 May; 181():44-51. PubMed ID: 29426537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel electroanalytical approach based on the use of a room temperature ionic liquid for the determination of olive oil acidity.
    Baldo MA; Oliveri P; Simonetti R; Daniele S
    Talanta; 2016 Dec; 161():881-887. PubMed ID: 27769498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroanalytical cells pencil drawn on PVC supports and their use for the detection in flexible microfluidic devices.
    Dossi N; Petrazzi S; Terzi F; Toniolo R; Bontempelli G
    Talanta; 2019 Jul; 199():14-20. PubMed ID: 30952237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical gas sensor based on paper supported room temperature ionic liquids.
    Dossi N; Toniolo R; Pizzariello A; Carrilho E; Piccin E; Battiston S; Bontempelli G
    Lab Chip; 2012 Jan; 12(1):153-8. PubMed ID: 22076475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pencil graphite leads as simple amperometric sensors for microchip electrophoresis.
    Natiele Tiago da Silva E; Marques Petroni J; Gabriel Lucca B; Souza Ferreira V
    Electrophoresis; 2017 Nov; 38(21):2733-2740. PubMed ID: 28833300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltammetric fingerprinting of oils and its combination with chemometrics for the detection of extra virgin olive oil adulteration.
    Tsopelas F; Konstantopoulos D; Kakoulidou AT
    Anal Chim Acta; 2018 Jul; 1015():8-19. PubMed ID: 29530255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroanalytical devices with pins and thread.
    Glavan AC; Ainla A; Hamedi MM; Fernández-Abedul MT; Whitesides GM
    Lab Chip; 2016 Jan; 16(1):112-9. PubMed ID: 26549661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Ascorbic Acid in Commercial Tablets Using Pencil Drawn Electrochemical Paper-based Analytical Devices.
    Oliveira VXG; Dias AA; Carvalho LL; Cardoso TMG; Colmati F; Coltro WKT
    Anal Sci; 2018; 34(1):91-95. PubMed ID: 29321465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical preconcentration coupled with spectroscopic techniques for trace lead analysis in olive oils.
    Baldo MA; Stortini AM; Oliveri P; Leardi R; Moretto LM; Ugo P
    Talanta; 2020 Apr; 210():120667. PubMed ID: 31987161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sheath-flow electrochemical detection of amino acids with a copper wire electrode in capillary electrophoresis.
    Inoue J; Kaneta T; Imasaka T
    Electrophoresis; 2012 Sep; 33(17):2743-7. PubMed ID: 22965720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Chemically Modified Sensor Based on a Pentapeptide and Its Application for Sensitive Detection of Verbascoside in Extra Virgin Olive Oil.
    Munteanu IG; Grădinaru VR; Apetrei C
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil.
    Godoy-Caballero Mdel P; Acedo-Valenzuela MI; Galeano-Díaz T; Costa-García A; Fernández-Abedul MT
    Analyst; 2012 Nov; 137(21):5153-60. PubMed ID: 23000970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-electrode detection for capillary electrophoresis/electrochemistry.
    Zhong M; Zhou J; Lunte SM; Zhao G; Giolando DM; Kirchhoff JR
    Anal Chem; 1996 Jan; 68(1):203-7. PubMed ID: 8779433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.
    Munshi AS; Martin RS
    Analyst; 2016 Feb; 141(3):862-9. PubMed ID: 26649363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the Analysis of Phenolic Secoiridoids in Extra Virgin Olive Oil.
    Celano R; Piccinelli AL; Pugliese A; Carabetta S; di Sanzo R; Rastrelli L; Russo M
    J Agric Food Chem; 2018 Jun; 66(24):6053-6063. PubMed ID: 29800514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation and electrochemical detection of paracetamol and 4-aminophenol in a paper-based microfluidic device.
    Shiroma LY; Santhiago M; Gobbi AL; Kubota LT
    Anal Chim Acta; 2012 May; 725():44-50. PubMed ID: 22502610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.