BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 30327250)

  • 21. Chemoproteomic profiling of protein modifications by lipid-derived electrophiles.
    Chen Y; Qin W; Wang C
    Curr Opin Chem Biol; 2016 Feb; 30():37-45. PubMed ID: 26625013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent protein modification: the current landscape of residue-specific electrophiles.
    Shannon DA; Weerapana E
    Curr Opin Chem Biol; 2015 Feb; 24():18-26. PubMed ID: 25461720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactive oxygen species and signal transduction.
    Finkel T
    IUBMB Life; 2001 Jul; 52(1-2):3-6. PubMed ID: 11795590
    [TBL] [Abstract][Full Text] [Related]  

  • 24. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger.
    Fujii S; Akaike T
    Antioxid Redox Signal; 2013 Oct; 19(11):1236-46. PubMed ID: 23157314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global profiling of lysine reactivity and ligandability in the human proteome.
    Hacker SM; Backus KM; Lazear MR; Forli S; Correia BE; Cravatt BF
    Nat Chem; 2017 Dec; 9(12):1181-1190. PubMed ID: 29168484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox regulation of electrophilic signaling by reactive persulfides in cardiac cells.
    Nishida M; Nishimura A; Matsunaga T; Motohashi H; Kasamatsu S; Akaike T
    Free Radic Biol Med; 2017 Aug; 109():132-140. PubMed ID: 28109891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of ubiquitination dependent dynamics in growth factor receptor signaling by quantitative proteomics.
    Akimov V; Rigbolt KT; Nielsen MM; Blagoev B
    Mol Biosyst; 2011 Dec; 7(12):3223-33. PubMed ID: 21956701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emerging proteomic technologies for elucidating context-dependent cellular signaling events: A big challenge of tiny proportions.
    Parker SJ; Raedschelders K; Van Eyk JE
    Proteomics; 2015 May; 15(9):1486-502. PubMed ID: 25545106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hitting the Bullseye: Endogenous Electrophiles Show Remarkable Nuance in Signaling Regulation.
    Long MJC; Miranda Herrera PA; Aye Y
    Chem Res Toxicol; 2022 Oct; 35(10):1636-1648. PubMed ID: 35394758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes.
    Rushmore TH; Kong AN
    Curr Drug Metab; 2002 Oct; 3(5):481-90. PubMed ID: 12369894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor tyrosine kinase signaling: a view from quantitative proteomics.
    Dengjel J; Kratchmarova I; Blagoev B
    Mol Biosyst; 2009 Oct; 5(10):1112-21. PubMed ID: 19756300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of oxidants with vascular signaling systems.
    Wolin MS
    Arterioscler Thromb Vasc Biol; 2000 Jun; 20(6):1430-42. PubMed ID: 10845855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments.
    Jöst C; Nitsche C; Scholz T; Roux L; Klein CD
    J Med Chem; 2014 Sep; 57(18):7590-9. PubMed ID: 25148591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding signal transduction through functional proteomics.
    Cheng X
    Expert Rev Proteomics; 2005 Jan; 2(1):103-16. PubMed ID: 15966856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
    Smith JG; Gerszten RE
    Circulation; 2017 Apr; 135(17):1651-1664. PubMed ID: 28438806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling.
    Azevedo D; Tacnet F; Delaunay A; Rodrigues-Pousada C; Toledano MB
    Free Radic Biol Med; 2003 Oct; 35(8):889-900. PubMed ID: 14556853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of Proteomic Technologies for Precision Oncology Applications.
    Pierobon M; Wulfkuhle J; Liotta LA; Petricoin Iii EF
    Cancer Treat Res; 2019; 178():171-187. PubMed ID: 31209845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allantopyrone A activates Keap1-Nrf2 pathway and protects PC12 cells from oxidative stress-induced cell death.
    Uesugi S; Muroi M; Kondoh Y; Shiono Y; Osada H; Kimura KI
    J Antibiot (Tokyo); 2017 Apr; 70(4):429-434. PubMed ID: 27507633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular and molecular mechanisms of oxidants and antioxidants.
    Traber MG
    Miner Electrolyte Metab; 1997; 23(3-6):135-9. PubMed ID: 9387103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research.
    Manes NP; Nita-Lazar A
    J Proteomics; 2018 Oct; 189():75-90. PubMed ID: 29452276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.