These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30327310)

  • 21. BOIN Suite: A Software Platform to Design and Implement Novel Early-Phase Clinical Trials.
    Zhou Y; Lin R; Kuo YW; Lee JJ; Yuan Y
    JCO Clin Cancer Inform; 2021 Jan; 5():91-101. PubMed ID: 33439726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rolling continual reassessment method with overdose control: An efficient and safe dose escalation design.
    Zhu J; Sabanés Bové D; Liao Z; Beyer U; Yung G; Sarkar S
    Contemp Clin Trials; 2021 Aug; 107():106436. PubMed ID: 34000410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance of toxicity probability interval based designs in contrast to the continual reassessment method.
    Horton BJ; Wages NA; Conaway MR
    Stat Med; 2017 Jan; 36(2):291-300. PubMed ID: 27435150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of various continual reassessment method models for dose-escalation phase 1 oncology clinical trials: using real clinical data and simulation studies.
    James GD; Symeonides S; Marshall J; Young J; Clack G
    BMC Cancer; 2021 Jan; 21(1):7. PubMed ID: 33402104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BOIN: a novel Bayesian design platform to accelerate early phase brain tumor clinical trials.
    Yuan Y; Wu J; Gilbert MR
    Neurooncol Pract; 2021 Dec; 8(6):627-638. PubMed ID: 34777832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Borrowing historical information to improve phase I clinical trials using meta-analytic-predictive priors.
    Chen X; Zhang J; Jiang Q; Yan F
    J Biopharm Stat; 2022 Jan; 32(1):34-52. PubMed ID: 35594366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the effects of design parameters on the performances of phase I trial designs.
    Zhu Y; Hwang WT; Li Y
    Contemp Clin Trials Commun; 2019 Sep; 15():100379. PubMed ID: 31193764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive design for identifying maximum tolerated dose early to accelerate dose-finding trial.
    Kojima M
    BMC Med Res Methodol; 2022 Apr; 22(1):97. PubMed ID: 35382745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid Bayesian adaptive design for dose response trials.
    Chang M; Chow SC
    J Biopharm Stat; 2005; 15(4):677-91. PubMed ID: 16022172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dose-finding clinical trial design for ordinal toxicity grades using the continuation ratio model: an extension of the continual reassessment method.
    Van Meter EM; Garrett-Mayer E; Bandyopadhyay D
    Clin Trials; 2012 Jun; 9(3):303-13. PubMed ID: 22547420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Practicalities in running early-phase trials using the time-to-event continual reassessment method (TiTE-CRM) for interventions with long toxicity periods using two radiotherapy oncology trials as examples.
    van Werkhoven E; Hinsley S; Frangou E; Holmes J; de Haan R; Hawkins M; Brown S; Love SB
    BMC Med Res Methodol; 2020 Jun; 20(1):162. PubMed ID: 32571298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of the partial-order continual reassessment method in the early development of treatment combinations.
    Wages NA; Dillon PM; Portell CA; Slingluff CL; Petroni GR
    Clin Trials; 2024 Jun; 21(3):331-339. PubMed ID: 38554038
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early completion of phase I cancer clinical trials with Bayesian optimal interval design.
    Kojima M
    Stat Med; 2021 Jun; 40(14):3215-3226. PubMed ID: 33844323
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Would the Recommended Dose Have Been Different Using Novel Dose-Finding Designs? Comparing Dose-Finding Designs in Published Trials.
    Silva RB; Yap C; Carvajal R; Lee SM
    JCO Precis Oncol; 2021; 5():. PubMed ID: 34250415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continual reassessment method for dose escalation clinical trials in oncology: a comparison of prior skeleton approaches using AZD3514 data.
    James GD; Symeonides SN; Marshall J; Young J; Clack G
    BMC Cancer; 2016 Aug; 16(1):703. PubMed ID: 27581751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of Bayesian optimal interval (BOIN) design with interval 3+3 (i3+3) design for phase I oncology dose-finding trials.
    Zhou Y; Li R; Yan F; Lee JJ; Yuan Y
    Stat Biopharm Res; 2021; 13(2):147-155. PubMed ID: 34249223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selection of the initial design for the two-stage continual reassessment method.
    Jia X; Ivanova A; Lee SM
    J Biopharm Stat; 2017; 27(3):495-506. PubMed ID: 28300466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations.
    Kakizume T; Takeda K; Taguri M; Morita S
    Stat Methods Med Res; 2024 Apr; 33(4):716-727. PubMed ID: 38444354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The continual reassessment method in cancer phase I clinical trials: a simulation study.
    Chevret S
    Stat Med; 1993 Jun; 12(12):1093-108. PubMed ID: 8210815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comprehensive comparison of the continual reassessment method to the standard 3 + 3 dose escalation scheme in Phase I dose-finding studies.
    Iasonos A; Wilton AS; Riedel ER; Seshan VE; Spriggs DR
    Clin Trials; 2008; 5(5):465-77. PubMed ID: 18827039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.