BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

716 related articles for article (PubMed ID: 30327380)

  • 1. Reactive Oxygen and Nitrogen Species-Induced Protein Modifications: Implication in Carcinogenesis and Anticancer Therapy.
    Moldogazieva NT; Lutsenko SV; Terentiev AA
    Cancer Res; 2018 Nov; 78(21):6040-6047. PubMed ID: 30327380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications.
    Moldogazieva NT; Mokhosoev IM; Feldman NB; Lutsenko SV
    Free Radic Res; 2018 May; 52(5):507-543. PubMed ID: 29589770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization.
    Moldogazieva NT; Mokhosoev IM; Mel'nikova TI; Zavadskiy SP; Kuz'menko AN; Terentiev AA
    Biochemistry (Mosc); 2020 Jan; 85(Suppl 1):S56-S78. PubMed ID: 32087054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of RONS and eIFs in Cancer Progression.
    Salaheldin YA; Mahmoud SSM; Ngowi EE; Gbordzor VA; Li T; Wu DD; Ji XY
    Oxid Med Cell Longev; 2021; 2021():5522054. PubMed ID: 34285764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents.
    Sun Y; Rigas B
    Cancer Res; 2008 Oct; 68(20):8269-77. PubMed ID: 18922898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor.
    De Backer J; Razzokov J; Hammerschmid D; Mensch C; Hafideddine Z; Kumar N; van Raemdonck G; Yusupov M; Van Doorslaer S; Johannessen C; Sobott F; Bogaerts A; Dewilde S
    Redox Biol; 2018 Oct; 19():1-10. PubMed ID: 30081385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox signaling.
    Forman HJ; Torres M; Fukuto J
    Mol Cell Biochem; 2002; 234-235(1-2):49-62. PubMed ID: 12162460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular chaperones and proteostasis regulation during redox imbalance.
    Niforou K; Cheimonidou C; Trougakos IP
    Redox Biol; 2014; 2():323-32. PubMed ID: 24563850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indomethacin induces apoptosis in 786-O renal cell carcinoma cells by activating mitogen-activated protein kinases and AKT.
    Ou YC; Yang CR; Cheng CL; Raung SL; Hung YY; Chen CJ
    Eur J Pharmacol; 2007 Jun; 563(1-3):49-60. PubMed ID: 17341418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Autophagy Promotes Salinomycin-Induced Apoptosis via Reactive Oxygen Species-Mediated PI3K/AKT/mTOR and ERK/p38 MAPK-Dependent Signaling in Human Prostate Cancer Cells.
    Kim KY; Park KI; Kim SH; Yu SN; Park SG; Kim YW; Seo YK; Ma JY; Ahn SC
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28524116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pro-apoptotic and pro-autophagic effects of the Aurora kinase A inhibitor alisertib (MLN8237) on human osteosarcoma U-2 OS and MG-63 cells through the activation of mitochondria-mediated pathway and inhibition of p38 MAPK/PI3K/Akt/mTOR signaling pathway.
    Niu NK; Wang ZL; Pan ST; Ding HQ; Au GH; He ZX; Zhou ZW; Xiao G; Yang YX; Zhang X; Yang T; Chen XW; Qiu JX; Zhou SF
    Drug Des Devel Ther; 2015; 9():1555-84. PubMed ID: 25792811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox control of cancer cell destruction.
    Hegedűs C; Kovács K; Polgár Z; Regdon Z; Szabó É; Robaszkiewicz A; Forman HJ; Martner A; Virág L
    Redox Biol; 2018 Jun; 16():59-74. PubMed ID: 29477046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-Glutathionylation and S-Nitrosylation as Modulators of Redox-Dependent Processes in Cancer Cell.
    Kalinina EV; Novichkova MD
    Biochemistry (Mosc); 2023 Jul; 88(7):924-943. PubMed ID: 37751864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry and redox proteomics: applications in disease.
    Butterfield DA; Gu L; Di Domenico F; Robinson RA
    Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Redox in Signal Transduction.
    Hancock JT
    Methods Mol Biol; 2019; 1990():1-11. PubMed ID: 31148058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox proteomics: from bench to bedside.
    Ckless K
    Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.