BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 30327804)

  • 1. Near-field infrared nanospectroscopy and super-resolution fluorescence microscopy enable complementary nanoscale analyses of lymphocyte nuclei.
    Ajaezi GC; Eisele M; Contu F; Lal S; Rangel-Pozzo A; Mai S; Gough KM
    Analyst; 2018 Dec; 143(24):5926-5934. PubMed ID: 30327804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative superresolution microscopy reveals differences in nuclear DNA organization of multiple myeloma and monoclonal gammopathy of undetermined significance.
    Sathitruangsak C; Righolt CH; Klewes L; Tammur P; Ilus T; Tamm A; Punab M; Olujohungbe A; Mai S
    J Cell Biochem; 2015 May; 116(5):704-10. PubMed ID: 25501803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for studies of nuclear architecture.
    Markaki Y; Smeets D; Fiedler S; Schmid VJ; Schermelleh L; Cremer T; Cremer M
    Bioessays; 2012 May; 34(5):412-26. PubMed ID: 22508100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analyses of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy.
    Schmid VJ; Cremer M; Cremer T
    Methods; 2017 Jul; 123():33-46. PubMed ID: 28323041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the 3D architecture of the plant nucleus with microscopy approaches: challenges and solutions.
    Dumur T; Duncan S; Graumann K; Desset S; Randall RS; Scheid OM; Prodanov D; Tatout C; Baroux C
    Nucleus; 2019 Dec; 10(1):181-212. PubMed ID: 31362571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy.
    Righolt CH; Guffei A; Knecht H; Young IT; Stallinga S; van Vliet LJ; Mai S
    J Cell Biochem; 2014 Aug; 115(8):1441-8. PubMed ID: 24590512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared chemical imaging: spatial resolution evaluation and super-resolution concept.
    Offroy M; Roggo Y; Milanfar P; Duponchel L
    Anal Chim Acta; 2010 Aug; 674(2):220-6. PubMed ID: 20678633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional super-resolution imaging of live whole cells using galvanometer-based structured illumination microscopy.
    Liu W; Liu Q; Zhang Z; Han Y; Kuang C; Xu L; Yang H; Liu X
    Opt Express; 2019 Mar; 27(5):7237-7248. PubMed ID: 30876291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IR super-resolution microspectroscopy and its application to single cells.
    Sakai M; Inoue K; Fujii M
    Curr Pharm Biotechnol; 2013; 14(2):159-66. PubMed ID: 22356113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative volumetric analysis of the Golgi apparatus following X-ray irradiation by super-resolution 3D-SIM microscopy.
    Oike T; Uchihara Y; Permata TBM; Gondhowiardjo S; Ohno T; Shibata A
    Med Mol Morphol; 2021 Jun; 54(2):166-172. PubMed ID: 33501611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM).
    Turnbull L; Strauss MP; Liew AT; Monahan LG; Whitchurch CB; Harry EJ
    J Vis Exp; 2014 Sep; (91):51469. PubMed ID: 25286090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advancements in structured-illumination microscopy toward live-cell imaging.
    Hirano Y; Matsuda A; Hiraoka Y
    Microscopy (Oxf); 2015 Aug; 64(4):237-49. PubMed ID: 26133185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo and In Situ Replication Labeling Methods for Super-resolution Structured Illumination Microscopy of Chromosome Territories and Chromatin Domains.
    Miron E; Innocent C; Heyde S; Schermelleh L
    Methods Mol Biol; 2016; 1431():127-40. PubMed ID: 27283306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mid-IR microspectroscopic imaging of breast tumor tissue sections.
    Fabian H; Lasch P; Boese M; Haensch W
    Biopolymers; 2002; 67(4-5):354-7. PubMed ID: 12012465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA.
    Findlay CR; Wiens R; Rak M; Sedlmair J; Hirschmugl CJ; Morrison J; Mundy CJ; Kansiz M; Gough KM
    Analyst; 2015 Apr; 140(7):2493-503. PubMed ID: 25600495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D positioning of tagged DNA loci by widefield and super-resolution fluorescence imaging of fixed yeast nuclei.
    Da Mota M; Cau J; Mateos-Langerak J; Lengronne A; Pasero P; Poli J
    STAR Protoc; 2021 Jun; 2(2):100525. PubMed ID: 34027483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cells.
    Inoue K; Fujii M; Sakai M
    Appl Spectrosc; 2010 Mar; 64(3):275-81. PubMed ID: 20223061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma.
    Knecht H; Mai S
    Methods Mol Biol; 2017; 1532():93-104. PubMed ID: 27873269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metamaterial assisted illumination nanoscopy via random super-resolution speckles.
    Lee YU; Zhao J; Ma Q; Khorashad LK; Posner C; Li G; Wisna GBM; Burns Z; Zhang J; Liu Z
    Nat Commun; 2021 Mar; 12(1):1559. PubMed ID: 33692354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.