These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

814 related articles for article (PubMed ID: 30328048)

  • 1. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.
    Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA
    Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI.
    Braman NM; Etesami M; Prasanna P; Dubchuk C; Gilmore H; Tiwari P; Plecha D; Madabhushi A
    Breast Cancer Res; 2017 May; 19(1):57. PubMed ID: 28521821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy.
    Liu HQ; Lin SY; Song YD; Mai SY; Yang YD; Chen K; Wu Z; Zhao HY
    Eur Radiol; 2023 Apr; 33(4):2965-2974. PubMed ID: 36418622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer.
    Bitencourt AGV; Gibbs P; Rossi Saccarelli C; Daimiel I; Lo Gullo R; Fox MJ; Thakur S; Pinker K; Morris EA; Morrow M; Jochelson MS
    EBioMedicine; 2020 Nov; 61():103042. PubMed ID: 33039708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer.
    Li X; Li C; Wang H; Jiang L; Chen M
    PeerJ; 2024; 12():e17683. PubMed ID: 39026540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI.
    Caballo M; Sanderink WBG; Han L; Gao Y; Athanasiou A; Mann RM
    J Magn Reson Imaging; 2023 Jan; 57(1):97-110. PubMed ID: 35633290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of
    Akimoto E; Kadoya T; Kajitani K; Emi A; Shigematsu H; Ohara M; Masumoto N; Okada M
    Clin Breast Cancer; 2018 Feb; 18(1):45-52. PubMed ID: 28993056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer.
    Mohamed RM; Panthi B; Adrada BE; Boge M; Candelaria RP; Chen H; Guirguis MS; Hunt KK; Huo L; Hwang KP; Korkut A; Litton JK; Moseley TW; Pashapoor S; Patel MM; Reed B; Scoggins ME; Son JB; Thompson A; Tripathy D; Valero V; Wei P; White J; Whitman GJ; Xu Z; Yang W; Yam C; Ma J; Rauch GM
    Sci Rep; 2024 Jul; 14(1):16073. PubMed ID: 38992094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for diagnostic ultrasound of triple-negative breast cancer.
    Wu T; Sultan LR; Tian J; Cary TW; Sehgal CM
    Breast Cancer Res Treat; 2019 Jan; 173(2):365-373. PubMed ID: 30343454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of machine learning models for predicting HER2-zero and HER2-low breast cancers.
    Huang X; Wu L; Liu Y; Xu Z; Liu C; Liu Z; Liang C
    Br J Radiol; 2024 Sep; 97(1161):1568-1576. PubMed ID: 38991838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.
    Sutton EJ; Onishi N; Fehr DA; Dashevsky BZ; Sadinski M; Pinker K; Martinez DF; Brogi E; Braunstein L; Razavi P; El-Tamer M; Sacchini V; Deasy JO; Morris EA; Veeraraghavan H
    Breast Cancer Res; 2020 May; 22(1):57. PubMed ID: 32466777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy.
    Zeng Q; Ke M; Zhong L; Zhou Y; Zhu X; He C; Liu L
    Acad Radiol; 2023 Aug; 30(8):1638-1647. PubMed ID: 36564256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel computational biology modeling system can accurately forecast response to neoadjuvant therapy in early breast cancer.
    Peterson JR; Cole JA; Pfeiffer JR; Norris GH; Zhang Y; Lopez-Ramos D; Pandey T; Biancalana M; Esslinger HR; Antony AK; Takiar V
    Breast Cancer Res; 2023 May; 25(1):54. PubMed ID: 37165441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI-based tumor shrinkage patterns after early neoadjuvant therapy in breast cancer: correlation with molecular subtypes and pathological response after therapy.
    Wang M; Du S; Gao S; Zhao R; Liu S; Jiang W; Peng C; Chai R; Zhang L
    Breast Cancer Res; 2024 Feb; 26(1):26. PubMed ID: 38347619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer.
    Li Y; Chen Y; Zhao R; Ji Y; Li J; Zhang Y; Lu H
    Eur Radiol; 2022 Mar; 32(3):1676-1687. PubMed ID: 34767068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the response to neoadjuvant chemotherapy for breast cancer: wavelet transforming radiomics in MRI.
    Zhou J; Lu J; Gao C; Zeng J; Zhou C; Lai X; Cai W; Xu M
    BMC Cancer; 2020 Feb; 20(1):100. PubMed ID: 32024483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging and Clinicopathologic Features Associated With Pathologic Complete Response in HER2-positive Breast Cancer Receiving Neoadjuvant Chemotherapy With Dual HER2 Blockade.
    Yoon GY; Chae EY; Cha JH; Shin HJ; Choi WJ; Kim HH; Kim JE; Kim SB
    Clin Breast Cancer; 2020 Feb; 20(1):25-32. PubMed ID: 31519449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Tumor Response After Neoadjuvant Chemotherapy in Breast Cancer Patients: Correlation Between Dynamic Contrast-enhanced Magnetic Resonance Imaging and Pathologic Tumor Cellularity.
    Choi WJ; Kim WK; Shin HJ; Cha JH; Chae EY; Kim HH
    Clin Breast Cancer; 2018 Feb; 18(1):e115-e121. PubMed ID: 28890184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Contrast-Enhanced MRI Evaluation of Pathologic Complete Response in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer After HER2-Targeted Therapy.
    Heacock L; Lewin A; Ayoola A; Moccaldi M; Babb JS; Kim SG; Moy L
    Acad Radiol; 2020 May; 27(5):e87-e93. PubMed ID: 31444111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.