These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30328279)

  • 1. Retinal imaging with optical coherence tomography and low-loss adaptive optics using a 2.8-mm beam size.
    Maddipatla R; Cervantes J; Otani Y; Cense B
    J Biophotonics; 2019 Jun; 12(6):e201800192. PubMed ID: 30328279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy.
    Merino D; Dainty C; Bradu A; Podoleanu AG
    Opt Express; 2006 Apr; 14(8):3345-53. PubMed ID: 19516479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical coherence tomography with a 2.8-mm beam diameter and sensorless defocus and astigmatism correction.
    Reddikumar M; Tanabe A; Hashimoto N; Cense B
    J Biomed Opt; 2017 Feb; 22(2):26005. PubMed ID: 28195602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive-optics ultrahigh-resolution optical coherence tomography.
    Hermann B; Fernández EJ; Unterhuber A; Sattmann H; Fercher AF; Drexler W; Prieto PM; Artal P
    Opt Lett; 2004 Sep; 29(18):2142-4. PubMed ID: 15460883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.
    Bigelow CE; Iftimia NV; Ferguson RD; Ustun TE; Bloom B; Hammer DX
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1327-36. PubMed ID: 17429478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging.
    Ju MJ; Heisler M; Wahl D; Jian Y; Sarunic MV
    J Biomed Opt; 2017 Nov; 22(12):1-10. PubMed ID: 29094524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens-based wavefront sensorless adaptive optics swept source OCT.
    Jian Y; Lee S; Ju MJ; Heisler M; Ding W; Zawadzki RJ; Bonora S; Sarunic MV
    Sci Rep; 2016 Jun; 6():27620. PubMed ID: 27278853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous high-resolution retinal imaging and high-penetration choroidal imaging by one-micrometer adaptive optics optical coherence tomography.
    Kurokawa K; Sasaki K; Makita S; Yamanari M; Cense B; Yasuno Y
    Opt Express; 2010 Apr; 18(8):8515-27. PubMed ID: 20588698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined hardware and computational optical wavefront correction.
    South FA; Kurokawa K; Liu Z; Liu YZ; Miller DT; Boppart SA
    Biomed Opt Express; 2018 Jun; 9(6):2562-2574. PubMed ID: 30258673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging.
    Zawadzki RJ; Jones SM; Olivier SS; Zhao M; Bower BA; Izatt JA; Choi S; Laut S; Werner JS
    Opt Express; 2005 Oct; 13(21):8532-8546. PubMed ID: 19096728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coextensive synchronized SLO-OCT with adaptive optics for human retinal imaging.
    Azimipour M; Jonnal RS; Werner JS; Zawadzki RJ
    Opt Lett; 2019 Sep; 44(17):4219-4222. PubMed ID: 31465366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local wavefront mapping in tissue using computational adaptive optics OCT.
    South FA; Liu YZ; Huang PC; Kohlfarber T; Boppart SA
    Opt Lett; 2019 Mar; 44(5):1186-1189. PubMed ID: 30821744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction.
    Zawadzki RJ; Cense B; Zhang Y; Choi SS; Miller DT; Werner JS
    Opt Express; 2008 May; 16(11):8126-43. PubMed ID: 18545525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging.
    Jian Y; Zawadzki RJ; Sarunic MV
    J Biomed Opt; 2013 May; 18(5):56007. PubMed ID: 23644903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential phase standard-deviation-based optical coherence tomographic angiography for human retinal imaging in vivo.
    Shi W; Chen C; Pasarikovski CR; Gao W; Yang VXD
    Appl Opt; 2019 May; 58(13):3401-3409. PubMed ID: 31044835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction.
    Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J
    IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging.
    Bedggood P; Daaboul M; Ashman R; Smith G; Metha A
    J Biomed Opt; 2008; 13(2):024008. PubMed ID: 18465971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.