These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30328465)

  • 1. In situ polymer flocculation and growth in Taylor-Couette flows.
    Metaxas A; Wilkinson N; Raethke E; Dutcher CS
    Soft Matter; 2018 Oct; 14(42):8627-8635. PubMed ID: 30328465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic strength and polyelectrolyte molecular weight effects on floc formation and growth in Taylor-Couette flows.
    Metaxas AE; Panwar V; Olson RL; Dutcher CS
    Soft Matter; 2021 Feb; 17(5):1246-1257. PubMed ID: 33300931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taylor-Couette flow with radial fluid injection.
    Wilkinson N; Dutcher CS
    Rev Sci Instrum; 2017 Aug; 88(8):083904. PubMed ID: 28863659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size and structure of Chlorella zofingiensis/FeCl(3) flocs in a shear flow.
    Wyatt NB; O'Hern TJ; Shelden B; Hughes LG; Mondy LA
    Biotechnol Bioeng; 2013 Dec; 110(12):3156-63. PubMed ID: 23842762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the two-dimensional and perimeter-based fractal dimensions of kaolinite flocs during flocculation: a simple experimental study.
    Zhu Z; Peng D; Dou J
    Water Sci Technol; 2018 Feb; 77(3-4):861-870. PubMed ID: 29488949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the micro-flocculation stage on the flocculation/sedimentation process: The role of shear rate.
    Wang Z; Nan J; Ji X; Yang Y
    Sci Total Environ; 2018 Aug; 633():1183-1191. PubMed ID: 29758870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling aerobic biological floc size using Couette-Taylor Bioreactors.
    Weaver JE; Hong H; Ducoste JJ; de Los Reyes FL
    Water Res; 2018 Dec; 147():177-183. PubMed ID: 30308376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a novel chitosan-based flocculant with high flocculation performance, low toxicity and good floc properties.
    Yang Z; Li H; Yan H; Wu H; Yang H; Wu Q; Li H; Li A; Cheng R
    J Hazard Mater; 2014 Jul; 276():480-8. PubMed ID: 24929787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of laminar tube flow in the study of hydrodynamic and chemical influences on polymer flocculation of Escherichia coli.
    Whittington PN; George N
    Biotechnol Bioeng; 1992 Aug; 40(4):451-8. PubMed ID: 18601138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation, breakage and re-formation of flocs formed by cationic starch.
    Lin Q; Peng H; Lin Q; Yin G
    Water Sci Technol; 2013; 68(6):1352-8. PubMed ID: 24056434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic analysis on temporal evolution of floc size and structure in low-shear flow.
    He W; Nan J; Li H; Li S
    Water Res; 2012 Feb; 46(2):509-20. PubMed ID: 22137291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Floc structural characteristics using conventional coagulation for a high doc, low alkalinity surface water source.
    Jarvis P; Jefferson B; Parsons SA
    Water Res; 2006 Aug; 40(14):2727-37. PubMed ID: 16765408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of turbulent aggregation on clay floc breakup and implications for the oceanic environment.
    Rau MJ; Ackleson SG; Smith GB
    PLoS One; 2018; 13(12):e0207809. PubMed ID: 30521537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of different shear devices on flocculation.
    Serra T; Colomer J; Logan BE
    Water Res; 2008 Feb; 42(4-5):1113-21. PubMed ID: 17889250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of re-grown floc size and structure: effect of mixing conditions during floc growth, breakage and re-growth process.
    Nan J; Wang Z; Yao M; Yang Y; Zhang X
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):23750-23757. PubMed ID: 27623851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.
    Cao B; Gao B; Liu X; Wang M; Yang Z; Yue Q
    Water Res; 2011 Nov; 45(18):6181-8. PubMed ID: 21959092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of floc strength and breakage.
    Jarvis P; Jefferson B; Gregory J; Parsons SA
    Water Res; 2005 Sep; 39(14):3121-37. PubMed ID: 16000210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of aggregate size and shape properties under sequenced flocculation in a turbulent Taylor-Couette reactor.
    Guérin L; Coufort-Saudejaud C; Liné A; Frances C
    J Colloid Interface Sci; 2017 Apr; 491():167-178. PubMed ID: 28027466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of fractal dimensions to study the structure of flocs formed in lime softening process.
    Vahedi A; Gorczyca B
    Water Res; 2011 Jan; 45(2):545-56. PubMed ID: 20937512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of coagulation mechanisms and floc formation on filterability.
    Jiao R; Fabris R; Chow CWK; Drikas M; van Leeuwen J; Wang D; Xu Z
    J Environ Sci (China); 2017 Jul; 57():338-345. PubMed ID: 28647255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.