These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 3032861)
1. Cyclotron production of no-carrier-added 206Bi (6.24 d) and 205Bi (15.31 d) as tracers for biological studies and for the development of alpha-emitting radiotherapeutic agents. Lagunas-Solar MC; Carvacho OF; Nagahara L; Mishra A; Parks NJ Int J Rad Appl Instrum A; 1987; 38(2):129-37. PubMed ID: 3032861 [TBL] [Abstract][Full Text] [Related]
2. 205Bi/206Bi cyclotron production from Pb-isotopes for absorption studies in humans. Fischer R; Wendel J; Dresow B; Bechtold V; Heinrich HC Appl Radiat Isot; 1993 Dec; 44(12):1467-72. PubMed ID: 8257965 [TBL] [Abstract][Full Text] [Related]
3. Targetry and radiochemical methods for the simultaneous cyclotron production of no-carrier-added radiopharmaceutical-quality 100Pd, 97Ru and 101mRh. Lagunas-Solar MC; Avila MJ; Johnson PC Int J Rad Appl Instrum A; 1987; 38(2):151-7. PubMed ID: 3032863 [TBL] [Abstract][Full Text] [Related]
4. Tissue and subcellular distribution of bismuth radiotracer in the rat: considerations of cytotoxicity and microdosimetry for bismuth radiopharmaceuticals. Zidenberg-Cherr S; Parks NJ; Keen CL Radiat Res; 1987 Jul; 111(1):119-29. PubMed ID: 3602349 [TBL] [Abstract][Full Text] [Related]
5. Bioavailability of bismuth from 205Bi-labelled pharmaceutical oral Bi-preparations in rats. Dresow B; Nielsen P; Fischer R; Wendel J; Gabbe EE; Heinrich HC Arch Toxicol; 1991; 65(8):646-50. PubMed ID: 1747063 [TBL] [Abstract][Full Text] [Related]
6. A versatile technique for radiochemical separation of medically useful no-carrier-added (nca) radioarsenic from irradiated germanium oxide targets. Chattopadhyay S; Pal S; Vimalnath KV; Das MK Appl Radiat Isot; 2007 Nov; 65(11):1202-7. PubMed ID: 17656098 [TBL] [Abstract][Full Text] [Related]
7. Separation of no-carrier-added astatine radionuclides from α-particle irradiated lead bismuth eutectic target: A classical method. Maiti M; Lahiri S; Kumar D; Choudhury D Appl Radiat Isot; 2017 Sep; 127():227-230. PubMed ID: 28649020 [TBL] [Abstract][Full Text] [Related]
8. Production and separation of no-carrier-added radioactive tracers of yttrium, strontium and rubidium from heavy-ion irradiated germanium target: applicability to the standardization of a separation technique for production of positron-emitting radionuclide 86Y. Pal S; Chattopadhyay S; Das MK; Sudersanan M Appl Radiat Isot; 2006 Dec; 64(12):1521-7. PubMed ID: 16822676 [TBL] [Abstract][Full Text] [Related]
9. Separation of Naskar N; Lahiri S Appl Radiat Isot; 2021 Jul; 173():109717. PubMed ID: 33862310 [TBL] [Abstract][Full Text] [Related]
10. Cyclotron production of 128Cs (3.62 min). A new positron-emitting radionuclide for medical applications. Lagunas-Solar MC; Little FE; Moore HA Int J Appl Radiat Isot; 1982 Aug; 33(8):619-28. PubMed ID: 6981607 [TBL] [Abstract][Full Text] [Related]
12. Radiochemical determination of cross sections of alpha-particle induced reactions on 192Os for the production of the therapeutic radionuclide 193mPt. Uddin MS; Scholten B; Hermanne A; Sudár S; Coenen HH; Qaim SM Appl Radiat Isot; 2010 Oct; 68(10):2001-6. PubMed ID: 20538474 [TBL] [Abstract][Full Text] [Related]
13. Improved in vivo stability and tumor targeting of bismuth-labeled antibody. Ruegg CL; Anderson-Berg WT; Brechbiel MW; Mirzadeh S; Gansow OA; Strand M Cancer Res; 1990 Jul; 50(14):4221-6. PubMed ID: 2364380 [TBL] [Abstract][Full Text] [Related]
14. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc. Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396 [TBL] [Abstract][Full Text] [Related]
15. In vivo evaluation of bismuth-labeled monoclonal antibody comparing DTPA-derived bifunctional chelates. Milenic DE; Roselli M; Mirzadeh S; Pippin CG; Gansow OA; Colcher D; Brechbiel MW; Schlom J Cancer Biother Radiopharm; 2001 Apr; 16(2):133-46. PubMed ID: 11385960 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic Radiometals Beyond Müller C; van der Meulen NP; Benešová M; Schibli R J Nucl Med; 2017 Sep; 58(Suppl 2):91S-96S. PubMed ID: 28864619 [TBL] [Abstract][Full Text] [Related]
17. An electrochemical generator for the continual supply of Forrester R; Dutech G; Akin A; Fassbender ME; Mastren T Nucl Med Biol; 2024; 136-137():108941. PubMed ID: 39002499 [TBL] [Abstract][Full Text] [Related]
18. [Accelerator production of radioisotopes and their utilization in fields other than nuclear medicine]. Nozaki T Radioisotopes; 1987 Apr; 36(4):194-203. PubMed ID: 3497410 [No Abstract] [Full Text] [Related]
19. A simple and rapid technique for radiochemical separation of iodine radionuclides from irradiated tellurium using an activated charcoal column. Chattopadhyay S; Saha Das S Appl Radiat Isot; 2009 Oct; 67(10):1748-50. PubMed ID: 19410470 [TBL] [Abstract][Full Text] [Related]
20. "High specific activity" radiotracers for metallo-toxicological studies: cyclotron and nuclear reactor production, radiochemical separation and "quality control": platinum, iridium, gold, copper and gallium. Bonardi M; Groppi F; Birattari C; Arginelli D Ann Chim; 2002 Sep; 92(9):795-813. PubMed ID: 12407903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]