BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30328632)

  • 1. Evaluation of the scars' vascularization using computer processing of the digital images.
    Teplyi V; Grebchenko K
    Skin Res Technol; 2019 Mar; 25(2):194-199. PubMed ID: 30328632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved procedure to quantify tumour vascularity using true colour image analysis. Comparison with the manual hot-spot procedure in a human melanoma xenograft model.
    van der Laak JA; Westphal JR; Schalkwijk LJ; Pahlplatz MM; Ruiter DJ; de Waal RM; de Wilde PC
    J Pathol; 1998 Feb; 184(2):136-43. PubMed ID: 9602703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The challenge of objective scar colour assessment in a clinical setting: using digital photography.
    Anderson JC; Hallam MJ; Nduka C; Osorio D
    J Wound Care; 2015 Aug; 24(8):379-87. PubMed ID: 26562381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.
    Schuster AK; Fischer JE; Vossmerbaeumer U
    Acta Ophthalmol; 2014 Feb; 92(1):e42-9. PubMed ID: 23879386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-assisted, interactive fundus image processing for macular drusen quantitation.
    Shin DS; Javornik NB; Berger JW
    Ophthalmology; 1999 Jun; 106(6):1119-25. PubMed ID: 10366080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual assessment of linear scars: a new tool.
    Kerrigan CL; Homa K
    Plast Reconstr Surg; 2009 Nov; 124(5):1513-1519. PubMed ID: 20009837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability testing of a new scar assessment tool, Matching Assessment of Scars and Photographs (MAPS).
    Masters M; McMahon M; Svens B
    J Burn Care Rehabil; 2005; 26(3):273-84. PubMed ID: 15879752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity and reproducibility of cephalometric measurements obtained from digital photographs of analogue headfilms.
    Grybauskas S; Balciuniene I; Vetra J
    Stomatologija; 2007; 9(4):114-20. PubMed ID: 18303276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonographic evaluation of the myomectomy 'scars'.
    Pun TC; Chau MT; Lam C; Tang G; Leong L
    Acta Obstet Gynecol Scand; 1998 Feb; 77(2):218-21. PubMed ID: 9512331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiogenesis in pathological and surgical scars.
    Beer TW; Baldwin HC; Goddard JR; Gallagher PJ; Wright DH
    Hum Pathol; 1998 Nov; 29(11):1273-8. PubMed ID: 9824106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the facial assessment by computer evaluation (FACE) program for software-aided eyelid measurements.
    Choi CJ; Lefebvre DR; Yoon MK
    Orbit; 2016 Jun; 35(3):117-20. PubMed ID: 27010889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density.
    Wild R; Ramakrishnan S; Sedgewick J; Griffioen AW
    Microvasc Res; 2000 May; 59(3):368-76. PubMed ID: 10792968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new quantitative scale for clinical scar assessment.
    Beausang E; Floyd H; Dunn KW; Orton CI; Ferguson MW
    Plast Reconstr Surg; 1998 Nov; 102(6):1954-61. PubMed ID: 9810991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ways to increase precision and accuracy of wound area measurement using smart devices: Advanced app Planimator.
    Foltynski P
    PLoS One; 2018; 13(3):e0192485. PubMed ID: 29505569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of parametric renal clearance images in the assessment of basic risk factors for renalnal clearance images in the assessment of basic risk factors for renal scarring in children with recurrent urinary tract infections.
    Pietrzak-Stelasiak E; Bieńkiewicz M; Woźnicki W; Bubińska K; Kowalewska-Pietrzak M; Płachcińska A; Kuśmierek J
    Nucl Med Rev Cent East Eur; 2017; 20(2):76-80. PubMed ID: 28555450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Image Processing Techniques for Nonviable Tissue Quantification in Late Gadolinium Enhancement Cardiac Magnetic Resonance Images.
    Carminati MC; Boniotti C; Fusini L; Andreini D; Pontone G; Pepi M; Caiani EG
    J Thorac Imaging; 2016 May; 31(3):168-76. PubMed ID: 27043426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computerized method for determination of microvascular density.
    Rieder MJ; O'Drobinak DM; Greene AS
    Microvasc Res; 1995 Mar; 49(2):180-9. PubMed ID: 7603355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of manual and automated methods of measuring conjunctival vessel widths from photographic and digital images.
    Owen CG; Ellis TJ; Woodward EG
    Ophthalmic Physiol Opt; 2004 Mar; 24(2):74-81. PubMed ID: 15005671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and Photographic Equivalency of the Scar Cosmesis Assessment and Rating (SCAR) Scale, an Outcome Measure for Postoperative Scars.
    Kantor J
    JAMA Dermatol; 2017 Jan; 153(1):55-60. PubMed ID: 27806156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slide Set: Reproducible image analysis and batch processing with ImageJ.
    Nanes BA
    Biotechniques; 2015 Nov; 59(5):269-78. PubMed ID: 26554504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.