These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 30328747)

  • 21. A chemical probe based on the PreQ
    Balaratnam S; Rhodes C; Bume DD; Connelly C; Lai CC; Kelley JA; Yazdani K; Homan PJ; Incarnato D; Numata T; Schneekloth JS
    Nat Commun; 2021 Oct; 12(1):5856. PubMed ID: 34615874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Molecule Approaches for the Characterization of Riboswitch Folding Mechanisms.
    Boudreault J; Perez-Gonzalez DC; Penedo JC; Lafontaine DA
    Methods Mol Biol; 2015; 1334():101-7. PubMed ID: 26404145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics Correlation Network for Allosteric Switching of PreQ1 Riboswitch.
    Wang W; Jiang C; Zhang J; Ye W; Luo R; Chen HF
    Sci Rep; 2016 Aug; 6():31005. PubMed ID: 27484311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-molecule FRET observes opposing effects of urea and TMAO on structurally similar meso- and thermophilic riboswitch RNAs.
    Hou Q; Chatterjee S; Lund PE; Suddala KC; Walter NG
    Nucleic Acids Res; 2023 Nov; 51(20):11345-11357. PubMed ID: 37855661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conscious uncoupling of riboswitch functions.
    Kierzek E; Kierzek R
    J Biol Chem; 2020 Feb; 295(9):2568-2569. PubMed ID: 32111719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coupling Green Fluorescent Protein Expression with Chemical Modification to Probe Functionally Relevant Riboswitch Conformations in Live Bacteria.
    Dutta D; Belashov IA; Wedekind JE
    Biochemistry; 2018 Aug; 57(31):4620-4628. PubMed ID: 29897738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A natural riboswitch scaffold with self-methylation activity.
    Flemmich L; Heel S; Moreno S; Breuker K; Micura R
    Nat Commun; 2021 Jun; 12(1):3877. PubMed ID: 34162884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy.
    Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.
    Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH
    RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microsecond Folding of preQ
    Sarkar B; Ishii K; Tahara T
    J Am Chem Soc; 2021 Jun; 143(21):7968-7978. PubMed ID: 34013733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ
    Gong Z; Yang S; Dong X; Yang QF; Zhu YL; Xiao Y; Tang C
    J Mol Biol; 2020 Jul; 432(16):4523-4543. PubMed ID: 32522558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein unties the pseudoknot: S1-mediated unfolding of RNA higher order structure.
    Lund PE; Chatterjee S; Daher M; Walter NG
    Nucleic Acids Res; 2020 Feb; 48(4):2107-2125. PubMed ID: 31832686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of lysine binding residues in the global folding of the lysC riboswitch.
    Smith-Peter E; Lamontagne AM; Lafontaine DA
    RNA Biol; 2015; 12(12):1372-82. PubMed ID: 26403229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of a preQ1-I riboswitch in effector-free and bound states reveals a metabolite-programmed nucleobase-stacking spine that controls gene regulation.
    Schroeder GM; Dutta D; Cavender CE; Jenkins JL; Pritchett EM; Baker CD; Ashton JM; Mathews DH; Wedekind JE
    Nucleic Acids Res; 2020 Aug; 48(14):8146-8164. PubMed ID: 32597951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics coming into focus: single-molecule microscopy of riboswitch dynamics.
    Ray S; Chauvier A; Walter NG
    RNA Biol; 2019 Sep; 16(9):1077-1085. PubMed ID: 30328748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding of a transcriptionally acting preQ1 riboswitch.
    Rieder U; Kreutz C; Micura R
    Proc Natl Acad Sci U S A; 2010 Jun; 107(24):10804-9. PubMed ID: 20534493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined smFRET and NMR analysis of riboswitch structural dynamics.
    Bains JK; Blechar J; de Jesus V; Meiser N; Zetzsche H; Fürtig B; Schwalbe H; Hengesbach M
    Methods; 2019 Jan; 153():22-34. PubMed ID: 30316819
    [No Abstract]   [Full Text] [Related]  

  • 38. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
    Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU
    Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and function of preQ
    Eichhorn CD; Kang M; Feigon J
    Biochim Biophys Acta; 2014 Oct; 1839(10):939-950. PubMed ID: 24798077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA.
    Kang M; Peterson R; Feigon J
    Mol Cell; 2009 Mar; 33(6):784-90. PubMed ID: 19285444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.