These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30328853)

  • 1. Quantum dots as an electron or hole acceptor: on some factors affecting charge transfer in dye-quantum dot composites.
    Jain K; Kishor S; Singh KS; Odelius M; Ramaniah LM
    Phys Chem Chem Phys; 2018 Oct; 20(42):27036-27048. PubMed ID: 30328853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes.
    Kilina S; Cui P; Fischer SA; Tretiak S
    J Phys Chem Lett; 2014 Oct; 5(20):3565-76. PubMed ID: 26278611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of co-adsorption on interfacial charge transfer in a quantum dot@dye composite.
    Cui P; Xue Y
    Nanoscale Res Lett; 2021 Sep; 16(1):147. PubMed ID: 34542732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density functional investigation and some optical experiments on dye-sensitized quantum dots.
    Jain K; Kaniyankandy S; Kishor S; Josefsson I; Ghosh HN; Singh KS; Mookerjee S; Odelius M; Ramaniah LM
    Phys Chem Chem Phys; 2015 Nov; 17(43):28683-96. PubMed ID: 26445895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directing Charge Transfer in Quantum Dot Assemblies.
    Bloom BP; Liu R; Zhang P; Ghosh S; Naaman R; Beratan DN; Waldeck DH
    Acc Chem Res; 2018 Oct; 51(10):2565-2573. PubMed ID: 30289241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-transfer channel in quantum dot-graphene hybrid materials.
    Cao S; Wang J; Ma F; Sun M
    Nanotechnology; 2018 Apr; 29(14):145202. PubMed ID: 29388921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super sensitization: grand charge (hole/electron) separation in ATC dye sensitized CdSe, CdSe/ZnS type-I, and CdSe/CdTe type-II core-shell quantum dots.
    Debnath T; Maity P; Ghosh HN
    Chemistry; 2014 Oct; 20(41):13305-13. PubMed ID: 25179856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Charge Transfer in Photoexcited QD-Molecule Composite of Tetrahedral CdSe Quantum Dot Coupled with Carbazole.
    Samuthirapandi K; Durairaj P; Sarkar S
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31045-31055. PubMed ID: 38857441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of bilayer quantum dot models based on coronene and its BN analogues with a BODIPY dye: Theoretical TD-CAM-B3LYP-D3 investigation.
    Petrushenko IK; Petrushenko KB
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():498-505. PubMed ID: 30176425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bridging Lanthanide to Quantum Dot Energy Transfer with a Short-Lifetime Organic Dye.
    Díaz SA; Lasarte Aragonés G; Buckhout-White S; Qiu X; Oh E; Susumu K; Melinger JS; Huston AL; Hildebrandt N; Medintz IL
    J Phys Chem Lett; 2017 May; 8(10):2182-2188. PubMed ID: 28467088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating electronic coupling at the quantum dot/molecule interface by wavefunction engineering.
    Kaledin AL; Hill CL; Lian T; Musaev DG
    J Chem Phys; 2019 Mar; 150(12):124704. PubMed ID: 30927884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-Dependent Hole Transfer from Photoexcited Quantum Dots to Molecular Species: Evidence for Trap-Mediated Transfer.
    Olshansky JH; Balan AD; Ding TX; Fu X; Lee YV; Alivisatos AP
    ACS Nano; 2017 Aug; 11(8):8346-8355. PubMed ID: 28759718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives.
    Kilina SV; Tamukong PK; Kilin DS
    Acc Chem Res; 2016 Oct; 49(10):2127-2135. PubMed ID: 27669357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating photoinduced charge transfer in double- and single-emission PbS@CdS core@shell quantum dots.
    Zhao H; Liang H; Gonfa BA; Chaker M; Ozaki T; Tijssen P; Vidal F; Ma D
    Nanoscale; 2014 Jan; 6(1):215-25. PubMed ID: 24132400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy and charge transfer in nanoscale hybrid materials.
    Basché T; Bottin A; Li C; Müllen K; Kim JH; Sohn BH; Prabhakaran P; Lee KS
    Macromol Rapid Commun; 2015 Jun; 36(11):1026-46. PubMed ID: 25761127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality Control of Electron Transfer in Quantum Dot Assemblies.
    Bloom BP; Graff BM; Ghosh S; Beratan DN; Waldeck DH
    J Am Chem Soc; 2017 Jul; 139(26):9038-9043. PubMed ID: 28609095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.