These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30329225)

  • 1. Studying Glycolytic Oscillations in Individual Yeast Cells by Combining Fluorescence Microscopy with Microfluidics and Optical Tweezers.
    Gustavsson AK; Banaeiyan AA; van Niekerk DD; Snoep JL; Adiels CB; Goksör M
    Curr Protoc Cell Biol; 2019 Mar; 82(1):e70. PubMed ID: 30329225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
    Eriksson E; Enger J; Nordlander B; Erjavec N; Ramser K; Goksör M; Hohmann S; Nyström T; Hanstorp D
    Lab Chip; 2007 Jan; 7(1):71-6. PubMed ID: 17180207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained glycolytic oscillations in individual isolated yeast cells.
    Gustavsson AK; van Niekerk DD; Adiels CB; du Preez FB; Goksör M; Snoep JL
    FEBS J; 2012 Aug; 279(16):2837-47. PubMed ID: 22607453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying Microfluidic Systems to Study Effects of Glucose at Single-Cell Level.
    Welkenhuysen N; Adiels CB; Goksör M; Hohmann S
    Methods Mol Biol; 2018; 1713():109-121. PubMed ID: 29218521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneity of glycolytic oscillatory behaviour in individual yeast cells.
    Gustavsson AK; van Niekerk DD; Adiels CB; Goksör M; Snoep JL
    FEBS Lett; 2014 Jan; 588(1):3-7. PubMed ID: 24291821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning.
    Eriksson E; Sott K; Lundqvist F; Sveningsson M; Scrimgeour J; Hanstorp D; Goksör M; Granéli A
    Lab Chip; 2010 Mar; 10(5):617-25. PubMed ID: 20162237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA-protein interactions.
    Gross P; Farge G; Peterman EJ; Wuite GJ
    Methods Enzymol; 2010; 475():427-53. PubMed ID: 20627167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System.
    Pilát Z; Jonáš A; Ježek J; Zemánek P
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29144389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolytic oscillations and intracellular K
    Olsen LF; Stock RP; Bagatolli LA
    Arch Biochem Biophys; 2020 Mar; 681():108257. PubMed ID: 31917960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
    Wang X; Chen S; Kong M; Wang Z; Costa KD; Li RA; Sun D
    Lab Chip; 2011 Nov; 11(21):3656-62. PubMed ID: 21918752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single cell studies and simulation of cell-cell interactions using oscillating glycolysis in yeast cells.
    Poulsen AK; Petersen MØ; Olsen LF
    Biophys Chem; 2007 Feb; 125(2-3):275-80. PubMed ID: 16997454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic sorting of arbitrary cells with dynamic optical tweezers.
    Landenberger B; Höfemann H; Wadle S; Rohrbach A
    Lab Chip; 2012 Sep; 12(17):3177-83. PubMed ID: 22767208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells.
    Gustavsson AK; van Niekerk DD; Adiels CB; Kooi B; Goksör M; Snoep JL
    FEBS J; 2014 Jun; 281(12):2784-93. PubMed ID: 24751218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput microfluidics to control and measure signaling dynamics in single yeast cells.
    Hansen AS; Hao N; O'Shea EK
    Nat Protoc; 2015 Aug; 10(8):1181-97. PubMed ID: 26158443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment.
    Bier M; Bakker BM; Westerhoff HV
    Biophys J; 2000 Mar; 78(3):1087-93. PubMed ID: 10692299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of cell volume changes upon hyperosmotic stress in Saccharomyces cerevisiae.
    Petelenz-Kurdziel E; Eriksson E; Smedh M; Beck C; Hohmann S; Goksör M
    Integr Biol (Camb); 2011 Nov; 3(11):1120-6. PubMed ID: 22012314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillations in glycolysis in Saccharomyces cerevisiae: the role of autocatalysis and intracellular ATPase activity.
    Kloster A; Olsen LF
    Biophys Chem; 2012 May; 165-166():39-47. PubMed ID: 22459703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.