These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 30332327)
1. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome. Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327 [TBL] [Abstract][Full Text] [Related]
2. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Shivaswamy S; Iyer VR Mol Cell Biol; 2008 Apr; 28(7):2221-34. PubMed ID: 18212068 [TBL] [Abstract][Full Text] [Related]
3. Transcription factor-dependent chromatin remodeling at heat shock and copper-responsive promoters in Chlamydomonas reinhardtii. Strenkert D; Schmollinger S; Sommer F; Schulz-Raffelt M; Schroda M Plant Cell; 2011 Jun; 23(6):2285-301. PubMed ID: 21705643 [TBL] [Abstract][Full Text] [Related]
4. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. Yamamoto A; Mizukami Y; Sakurai H J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283 [TBL] [Abstract][Full Text] [Related]
5. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. Rubio LS; Mohajan S; Gross DS Elife; 2024 Oct; 12():. PubMed ID: 39405097 [TBL] [Abstract][Full Text] [Related]
6. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis. Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198 [TBL] [Abstract][Full Text] [Related]
7. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1. Sakurai H; Takemori Y J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150 [TBL] [Abstract][Full Text] [Related]
8. ASF1 and the SWI/SNF complex interact functionally during nucleosome displacement, while FACT is required for nucleosome reassembly at yeast heat shock gene promoters during sustained stress. Erkina TY; Erkine A Cell Stress Chaperones; 2015 Mar; 20(2):355-69. PubMed ID: 25416387 [TBL] [Abstract][Full Text] [Related]
9. Size doesn't matter in the heat shock response. Pincus D Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. Peffer S; Gonçalves D; Morano KA J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354 [TBL] [Abstract][Full Text] [Related]
11. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
12. Genetic inactivation of essential Ciccarelli M; Masser AE; Kaimal JM; Planells J; Andréasson C Mol Biol Cell; 2023 Sep; 34(10):ar101. PubMed ID: 37467033 [TBL] [Abstract][Full Text] [Related]
13. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. Hashikawa N; Yamamoto N; Sakurai H J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668 [TBL] [Abstract][Full Text] [Related]
14. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. Mühlhofer M; Offensperger F; Reschke S; Wallmann G; Csaba G; Berchtold E; Riedl M; Blum H; Haslbeck M; Zimmer R; Buchner J FEBS Lett; 2024 Mar; 598(6):635-657. PubMed ID: 38366111 [TBL] [Abstract][Full Text] [Related]
15. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Seymour IJ; Piper PW Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703 [TBL] [Abstract][Full Text] [Related]
16. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. Gossett AJ; Lieb JD PLoS Genet; 2012; 8(6):e1002771. PubMed ID: 22737086 [TBL] [Abstract][Full Text] [Related]
17. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Erkina TY; Tschetter PA; Erkine AM Mol Cell Biol; 2008 Feb; 28(4):1207-17. PubMed ID: 18070923 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide analysis reveals new roles for the activation domains of the Saccharomyces cerevisiae heat shock transcription factor (Hsf1) during the transient heat shock response. Eastmond DL; Nelson HC J Biol Chem; 2006 Oct; 281(43):32909-21. PubMed ID: 16926161 [TBL] [Abstract][Full Text] [Related]
19. The Heat Shock Response as a Condensate Cascade. Dea A; Pincus D J Mol Biol; 2024 Jul; 436(14):168642. PubMed ID: 38848866 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Vihervaara A; Sergelius C; Vasara J; Blom MA; Elsing AN; Roos-Mattjus P; Sistonen L Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3388-97. PubMed ID: 23959860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]