BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30332399)

  • 1. Genomic data integration systematically biases interactome mapping.
    Skinnider MA; Stacey RG; Foster LJ
    PLoS Comput Biol; 2018 Oct; 14(10):e1006474. PubMed ID: 30332399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-quality binary interactome mapping.
    Dreze M; Monachello D; Lurin C; Cusick ME; Hill DE; Vidal M; Braun P
    Methods Enzymol; 2010; 470():281-315. PubMed ID: 20946815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enriching Human Interactome with Functional Mutations to Detect High-Impact Network Modules Underlying Complex Diseases.
    Cui H; Srinivasan S; Korkin D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31731769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into protein-protein interaction data lead to increased estimates of the S. cerevisiae interactome size.
    Sambourg L; Thierry-Mieg N
    BMC Bioinformatics; 2010 Dec; 11():605. PubMed ID: 21176124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Domain-based prediction of the human isoform interactome provides insights into the functional impact of alternative splicing.
    Ghadie MA; Lambourne L; Vidal M; Xia Y
    PLoS Comput Biol; 2017 Aug; 13(8):e1005717. PubMed ID: 28846689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An empirical framework for binary interactome mapping.
    Venkatesan K; Rual JF; Vazquez A; Stelzl U; Lemmens I; Hirozane-Kishikawa T; Hao T; Zenkner M; Xin X; Goh KI; Yildirim MA; Simonis N; Heinzmann K; Gebreab F; Sahalie JM; Cevik S; Simon C; de Smet AS; Dann E; Smolyar A; Vinayagam A; Yu H; Szeto D; Borick H; Dricot A; Klitgord N; Murray RR; Lin C; Lalowski M; Timm J; Rau K; Boone C; Braun P; Cusick ME; Roth FP; Hill DE; Tavernier J; Wanker EE; Barabási AL; Vidal M
    Nat Methods; 2009 Jan; 6(1):83-90. PubMed ID: 19060904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.
    Cho YR; Zhang A
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S3. PubMed ID: 20438650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charting plant interactomes: possibilities and challenges.
    Morsy M; Gouthu S; Orchard S; Thorneycroft D; Harper JF; Mittler R; Cushman JC
    Trends Plant Sci; 2008 Apr; 13(4):183-91. PubMed ID: 18329319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactome INSIDER: a structural interactome browser for genomic studies.
    Meyer MJ; Beltrán JF; Liang S; Fragoza R; Rumack A; Liang J; Wei X; Yu H
    Nat Methods; 2018 Feb; 15(2):107-114. PubMed ID: 29355848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring mitochondrial system properties of neurodegenerative diseases through interactome mapping.
    Vlasblom J; Jin K; Kassir S; Babu M
    J Proteomics; 2014 Apr; 100():8-24. PubMed ID: 24262152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).
    Stacey RG; Skinnider MA; Scott NE; Foster LJ
    BMC Bioinformatics; 2017 Oct; 18(1):457. PubMed ID: 29061110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale mapping of human protein interactome using structural complexes.
    Tyagi M; Hashimoto K; Shoemaker BA; Wuchty S; Panchenko AR
    EMBO Rep; 2012 Mar; 13(3):266-71. PubMed ID: 22261719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterium tuberculosis and Clostridium difficille interactomes: demonstration of rapid development of computational system for bacterial interactome prediction.
    Ananthasubramanian S; Metri R; Khetan A; Gupta A; Handen A; Chandra N; Ganapathiraju M
    Microb Inform Exp; 2012 Mar; 2():4. PubMed ID: 22587966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network.
    Simonis N; Rual JF; Carvunis AR; Tasan M; Lemmens I; Hirozane-Kishikawa T; Hao T; Sahalie JM; Venkatesan K; Gebreab F; Cevik S; Klitgord N; Fan C; Braun P; Li N; Ayivi-Guedehoussou N; Dann E; Bertin N; Szeto D; Dricot A; Yildirim MA; Lin C; de Smet AS; Kao HL; Simon C; Smolyar A; Ahn JS; Tewari M; Boxem M; Milstein S; Yu H; Dreze M; Vandenhaute J; Gunsalus KC; Cusick ME; Hill DE; Tavernier J; Roth FP; Vidal M
    Nat Methods; 2009 Jan; 6(1):47-54. PubMed ID: 19123269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs).
    Yakubu RR; Nieves E; Weiss LM
    Adv Exp Med Biol; 2019; 1140():169-198. PubMed ID: 31347048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome.
    Li Y; Ilie L
    BMC Bioinformatics; 2017 Nov; 18(1):485. PubMed ID: 29141584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Information flow analysis of interactome networks.
    Missiuro PV; Liu K; Zou L; Ross BC; Zhao G; Liu JS; Ge H
    PLoS Comput Biol; 2009 Apr; 5(4):e1000350. PubMed ID: 19503817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating dispensable content in the human interactome.
    Ghadie M; Xia Y
    Nat Commun; 2019 Jul; 10(1):3205. PubMed ID: 31324802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactome mapping for analysis of complex phenotypes: insights from benchmarking binary interaction assays.
    Braun P
    Proteomics; 2012 May; 12(10):1499-518. PubMed ID: 22589225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRIN: a predicted rice interactome network.
    Gu H; Zhu P; Jiao Y; Meng Y; Chen M
    BMC Bioinformatics; 2011 May; 12():161. PubMed ID: 21575196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.