These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 30332500)

  • 1. The Influence of Tin(II) Incorporation on Visible Light Absorption and Photocatalytic Activity in Defect-Pyrochlores.
    Weiss M; Bredow T; Marschall R
    Chemistry; 2018 Dec; 24(69):18535-18543. PubMed ID: 30332500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of hydrated KTaWO
    Weiss M; Marschall R
    Nanoscale; 2018 May; 10(20):9691-9697. PubMed ID: 29762615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Insight on Defect-Rich Tin Oxide for Smart Band Alignment Engineering and Tunable Visible-Light-Driven Hydrogen Evolution.
    Song M; Wu Y; Zhao Y; Du C; Su Y
    Inorg Chem; 2020 Mar; 59(5):3181-3192. PubMed ID: 31975582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic reduction of Uranium(VI) under visible light with Sn-doped In
    Feng J; Yang Z; He S; Niu X; Zhang T; Ding A; Liang H; Feng X
    Chemosphere; 2018 Dec; 212():114-123. PubMed ID: 30144672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.
    Wang L; Cao B; Kang W; Hybertsen M; Maeda K; Domen K; Khalifah PG
    Inorg Chem; 2013 Aug; 52(16):9192-205. PubMed ID: 23901790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced Defect and Surface Chemistry of Niobium Tellurium Oxides ANbTeO
    Weiss M; Wirth B; Marschall R
    Inorg Chem; 2020 Jun; 59(12):8387-8395. PubMed ID: 32463666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-light photoactivity of Bi-pyrochlores with high Fe contents.
    Valant M; Bencina M; Fanetti M
    Acta Chim Slov; 2014; 61(3):447-52. PubMed ID: 25286199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of cation (Sn2+) and anion (N3-) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10.
    Kumar V; Govind ; Uma S
    J Hazard Mater; 2011 May; 189(1-2):502-8. PubMed ID: 21402438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization and photocatalytic activity of KAl0.33W1.67O6 and Sn0.5Al0.33W1.67O6xH2O.
    Ravi G; Veldurthi NK; Palla S; Velchuri R; Pola S; Reddy JR; Vithal M
    Photochem Photobiol; 2013; 89(4):824-31. PubMed ID: 23565887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile room temperature ion-exchange synthesis of Sn(2+) incorporated pyrochlore-type oxides and their photocatalytic activities.
    Uma S; Singh J; Thakral V
    Inorg Chem; 2009 Dec; 48(24):11624-30. PubMed ID: 19916549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen deficient ZnO 1-x nanosheets with high visible light photocatalytic activity.
    Guo HL; Zhu Q; Wu XL; Jiang YF; Xie X; Xu AW
    Nanoscale; 2015 Apr; 7(16):7216-23. PubMed ID: 25812132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic Properties of Bi
    Krasnov AG; Napalkov MS; Vlasov MI; Koroleva MS; Shein IR; Piir IV
    Inorg Chem; 2020 Sep; 59(17):12385-12396. PubMed ID: 32806001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Oxide Regulated Tin Oxide Nanostructures: Engineering Composition, Morphology, Band Structure, and Photocatalytic Properties.
    Pan X; Yi Z
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27167-75. PubMed ID: 26581093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn(4+) or Sb(5+).
    Mizoguchi H; Eng HW; Woodward PM
    Inorg Chem; 2004 Mar; 43(5):1667-80. PubMed ID: 14989659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-sacrifice template route to iodine modified BiOIO3: band gap engineering and highly boosted visible-light active photoreactivity.
    Feng J; Huang H; Yu S; Dong F; Zhang Y
    Phys Chem Chem Phys; 2016 Mar; 18(11):7851-9. PubMed ID: 26911659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced visible light photocatalytic activity of Gadolinium doped nanocrystalline titania: An experimental and theoretical study.
    Paul S; Chetri P; Choudhury B; Ameen Ahmed G; Choudhury A
    J Colloid Interface Sci; 2015 Feb; 439():54-61. PubMed ID: 25463175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of visible-light-active Sn(II)-TiO2 photocatalysts.
    Boppana VB; Jiao F; Newby D; Laverock J; Smith KE; Jumas JC; Hutchings G; Lobo RF
    Phys Chem Chem Phys; 2013 May; 15(17):6185-9. PubMed ID: 23532002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of new visible light active photocatalysts of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M' = Nb, Ta): a band gap engineering strategy based on electronegativity of a metal component.
    Hur SG; Kim TW; Hwang SJ; Park H; Choi W; Kim SJ; Choy JH
    J Phys Chem B; 2005 Aug; 109(31):15001-7. PubMed ID: 16852899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.