These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30332525)

  • 1. Morphology-induced physico-mechanical and biological characteristics of TPU-PDMS blend scaffolds for skin tissue engineering applications.
    Drupitha MP; Bankoti K; Pal P; Das B; Parameswar R; Dhara S; Nando GB; Naskar K
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1634-1644. PubMed ID: 30332525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.
    Mi HY; Salick MR; Jing X; Jacques BR; Crone WC; Peng XF; Turng LS
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4767-76. PubMed ID: 24094186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of electrospun thermoplastic polyurethane blended poly (l-lactide-co-e-caprolactone) microyarn scaffolds for engineering of female pelvic-floor tissue.
    Hou M; Wu Q; Dai M; Xu P; Gu C; Jia X; Feng J; Mo X
    Biomed Mater; 2014 Dec; 10(1):015005. PubMed ID: 25546879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissue-engineering applications.
    Chen R; Qiu L; Ke Q; He C; Mo X
    J Biomater Sci Polym Ed; 2009; 20(11):1513-36. PubMed ID: 19619394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the microstructure of electrospun fibrous scaffolds by microtopography.
    Cheng Q; Lee BL; Komvopoulos K; Li S
    Biomacromolecules; 2013 May; 14(5):1349-60. PubMed ID: 23534553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers.
    Cui Z; Lin J; Zhan C; Wu J; Shen S; Si J; Wang Q
    J Biomater Sci Polym Ed; 2020 Apr; 31(5):561-577. PubMed ID: 31920175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Qin Z; Xianyou S; Yuanpei L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():797-806. PubMed ID: 27987775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds.
    Yu J; Xia H; Teramoto A; Ni QQ
    J Biomed Mater Res A; 2018 Jan; 106(1):244-254. PubMed ID: 28880433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties and fibroblast cellular response of soft and hard thermoplastic polyurethane electrospun nanofibrous scaffolds.
    Mi HY; Jing X; Salick MR; Cordie TM; Peng XF; Turng LS
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):960-70. PubMed ID: 25176285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of collector type on the physical, chemical, and biological properties of polycaprolactone/gelatin/nano-hydroxyapatite electrospun scaffold.
    Sattary M; Rafienia M; Khorasani MT; Salehi H
    J Biomed Mater Res B Appl Biomater; 2019 May; 107(4):933-950. PubMed ID: 30199600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone blend scaffold for bone tissue engineering applications.
    Remya KR; Joseph J; Mani S; John A; Varma HK; Ramesh P
    J Biomed Nanotechnol; 2013 Sep; 9(9):1483-94. PubMed ID: 23980497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering.
    Türkkan S; Atila D; Akdağ A; Tezcaner A
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2625-2635. PubMed ID: 29360269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a porous 3D graphene-PDMS scaffold for improved osseointegration.
    Li J; Liu X; Crook JM; Wallace GG
    Colloids Surf B Biointerfaces; 2017 Nov; 159():386-393. PubMed ID: 28818783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of nanofibrous scaffolds obtained from blends of chitosan, gelatin and polycaprolactone for skin tissue engineering.
    Gomes S; Rodrigues G; Martins G; Henriques C; Silva JC
    Int J Biol Macromol; 2017 Sep; 102():1174-1185. PubMed ID: 28487195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size.
    Mi HY; Palumbo S; Jing X; Turng LS; Li WJ; Peng XF
    J Biomed Mater Res B Appl Biomater; 2014 Oct; 102(7):1434-44. PubMed ID: 24574168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth.
    Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.
    Mi HY; Jing X; Salick MR; Cordie TM; Turng LS
    J Mech Behav Biomed Mater; 2016 Sep; 62():417-427. PubMed ID: 27266475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering.
    Yu J; Xia H; Teramoto A; Ni QQ
    J Biomed Mater Res A; 2017 Apr; 105(4):1132-1137. PubMed ID: 28120551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.
    Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.