These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30332651)

  • 1. RBM17 Interacts with U2SURP and CHERP to Regulate Expression and Splicing of RNA-Processing Proteins.
    De Maio A; Yalamanchili HK; Adamski CJ; Gennarino VA; Liu Z; Qin J; Jung SY; Richman R; Orr H; Zoghbi HY
    Cell Rep; 2018 Oct; 25(3):726-736.e7. PubMed ID: 30332651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear ALG-2 protein interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP) Ca2+-dependently and participates in regulation of alternative splicing of inositol trisphosphate receptor type 1 (IP3R1) pre-mRNA.
    Sasaki-Osugi K; Imoto C; Takahara T; Shibata H; Maki M
    J Biol Chem; 2013 Nov; 288(46):33361-75. PubMed ID: 24078636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative splicing regulation of cell-cycle genes by SPF45/SR140/CHERP complex controls cell proliferation.
    Martín E; Vivori C; Rogalska M; Herrero-Vicente J; Valcárcel J
    RNA; 2021 Dec; 27(12):1557-1576. PubMed ID: 34544891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. U2-related proteins CHERP and SR140 contribute to colorectal tumorigenesis via alternative splicing regulation.
    Wang Q; Wang Y; Liu Y; Zhang C; Luo Y; Guo R; Zhan Z; Wei N; Xie Z; Shen L; Wu G; Wu W; Feng Y
    Int J Cancer; 2019 Nov; 145(10):2728-2739. PubMed ID: 30977118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models.
    Tan Q; Yalamanchili HK; Park J; De Maio A; Lu HC; Wan YW; White JJ; Bondar VV; Sayegh LS; Liu X; Gao Y; Sillitoe RV; Orr HT; Liu Z; Zoghbi HY
    Hum Mol Genet; 2016 Dec; 25(23):5083-5093. PubMed ID: 28007900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of spliceosome components pivotal to breast cancer survival.
    An J; Luo Z; An W; Cao D; Ma J; Liu Z
    RNA Biol; 2021 Jun; 18(6):833-842. PubMed ID: 32965163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 5'-tRNA halve, tiRNA-Gly promotes cell proliferation and migration via binding to RBM17 and inducing alternative splicing in papillary thyroid cancer.
    Han L; Lai H; Yang Y; Hu J; Li Z; Ma B; Xu W; Liu W; Wei W; Li D; Wang Y; Zhai Q; Ji Q; Liao T
    J Exp Clin Cancer Res; 2021 Jul; 40(1):222. PubMed ID: 34225773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression.
    Kim JS; He X; Liu J; Duan Z; Kim T; Gerard J; Kim B; Pillai MM; Lane WS; Noble WS; Budnik B; Waldman T
    J Biol Chem; 2019 May; 294(22):8760-8772. PubMed ID: 31010829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-evaluation of the role of calcium homeostasis endoplasmic reticulum protein (CHERP) in cellular calcium signaling.
    Lin-Moshier Y; Sebastian PJ; Higgins L; Sampson ND; Hewitt JE; Marchant JS
    J Biol Chem; 2013 Jan; 288(1):355-67. PubMed ID: 23148228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The splicing factor Prp17 interacts with the U2, U5 and U6 snRNPs and associates with the spliceosome pre- and post-catalysis.
    Sapra AK; Khandelia P; Vijayraghavan U
    Biochem J; 2008 Dec; 416(3):365-74. PubMed ID: 18691155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overlapping roles of spliceosomal components SF3B1 and PHF5A in rice splicing regulation.
    Butt H; Bazin J; Alshareef S; Eid A; Benhamed M; Reddy ASN; Crespi M; Mahfouz MM
    Commun Biol; 2021 May; 4(1):529. PubMed ID: 33953336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant RNA splicing and therapeutic opportunities in cancers.
    Yamauchi H; Nishimura K; Yoshimi A
    Cancer Sci; 2022 Feb; 113(2):373-381. PubMed ID: 34812550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Is Precursor Messenger RNA Spliced by the Spliceosome?
    Wan R; Bai R; Zhan X; Shi Y
    Annu Rev Biochem; 2020 Jun; 89():333-358. PubMed ID: 31815536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns.
    Fukumura K; Yoshimoto R; Sperotto L; Kang HS; Hirose T; Inoue K; Sattler M; Mayeda A
    Nat Commun; 2021 Aug; 12(1):4910. PubMed ID: 34389706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing.
    Goulielmaki E; Tsekrekou M; Batsiotos N; Ascensão-Ferreira M; Ledaki E; Stratigi K; Chatzinikolaou G; Topalis P; Kosteas T; Altmüller J; Demmers JA; Barbosa-Morais NL; Garinis GA
    Nat Commun; 2021 May; 12(1):3153. PubMed ID: 34039990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly.
    Rutz B; Séraphin B
    RNA; 1999 Jun; 5(6):819-31. PubMed ID: 10376880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes.
    Yildirim A; Mozaffari-Jovin S; Wallisch AK; Schäfer J; Ludwig SEJ; Urlaub H; Lührmann R; Wolfrum U
    Nucleic Acids Res; 2021 Jun; 49(10):5845-5866. PubMed ID: 34023904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro iCLIP-based modeling uncovers how the splicing factor U2AF2 relies on regulation by cofactors.
    Sutandy FXR; Ebersberger S; Huang L; Busch A; Bach M; Kang HS; Fallmann J; Maticzka D; Backofen R; Stadler PF; Zarnack K; Sattler M; Legewie S; König J
    Genome Res; 2018 May; 28(5):699-713. PubMed ID: 29643205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein 4.1R Exon 16 3' Splice Site Activation Requires Coordination among TIA1, Pcbp1, and RBM39 during Terminal Erythropoiesis.
    Huang SC; Zhang HS; Yu B; McMahon E; Nguyen DT; Yu FH; Ou AC; Ou JP; Benz EJ
    Mol Cell Biol; 2017 May; 37(9):. PubMed ID: 28193846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autosomal dominant retinitis pigmentosa-associated gene PRPF8 is essential for hypoxia-induced mitophagy through regulating ULK1 mRNA splicing.
    Xu G; Li T; Chen J; Li C; Zhao H; Yao C; Dong H; Wen K; Wang K; Zhao J; Xia Q; Zhou T; Zhang H; Gao P; Li A; Pan X
    Autophagy; 2018; 14(10):1818-1830. PubMed ID: 30103670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.