These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30332751)

  • 21. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates.
    Okanoue Y; Ikeuchi M; Takemasa R; Tani T; Matsumoto T; Sakamoto M; Nakasu M
    Arch Orthop Trauma Surg; 2012 Nov; 132(11):1603-10. PubMed ID: 22760581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulating Bone Regeneration in Rabbit Condyle Defects with Three Surface-Structured Tricalcium Phosphate Ceramics.
    Duan R; Barbieri D; de Groot F; de Bruijn JD; Yuan H
    ACS Biomater Sci Eng; 2018 Sep; 4(9):3347-3355. PubMed ID: 30221192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula.
    Wüster J; Neckel N; Sterzik F; Xiang-Tischhauser L; Barnewitz D; Genzel A; Koerdt S; Rendenbach C; Müller-Mai C; Heiland M; Nahles S; Knabe C
    Regen Biomater; 2024; 11():rbae041. PubMed ID: 38903563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [An experimental comparative study of hydroxyapatite and tricalcium-phosphate as bone substitutes].
    Nishina H
    Nihon Seikeigeka Gakkai Zasshi; 1989 Oct; 63(10):1237-47. PubMed ID: 2584833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of beta-tricalcium phosphate mixed with platelet-rich plasma versus beta-tricalcium phosphate, a bone substitute material in dentistry.
    Kovács K; Velich N; Huszár T; Szabó G; Semjén G; Reiczigel J; Suba Z
    Acta Vet Hung; 2003; 51(4):475-84. PubMed ID: 14680059
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation property of beta-tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with Bio-Oss Collagen® in a rat critical-size defect model.
    Kato E; Lemler J; Sakurai K; Yamada M
    Clin Implant Dent Relat Res; 2014 Apr; 16(2):202-11. PubMed ID: 22809239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo stability evaluation of Mg substituted low crystallinity ß-tricalcium phosphate granules fabricated through dissolution-precipitation reaction for bone regeneration.
    Tripathi G; Sugiura Y; Tsuru K; Ishikawa K
    Biomed Mater; 2018 Aug; 13(6):065002. PubMed ID: 30010092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation.
    Zerbo IR; Bronckers AL; de Lange G; Burger EH
    Biomaterials; 2005 Apr; 26(12):1445-51. PubMed ID: 15482833
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of carbonate apatite as a bone substitute in rat extraction sockets from the perspective of mesenchymal stem cells.
    Takahashi R; Atsuta I; Narimatsu I; Yamaza T; Zhang X; Egashira Y; Koyano K; Ayukawa Y
    Dent Mater J; 2023 Mar; 42(2):282-290. PubMed ID: 36696988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the carbonate content in carbonate apatite on bone replacement.
    Deguchi K; Nomura S; Tsuchiya A; Takahashi I; Ishikawa K
    J Tissue Eng Regen Med; 2022 Feb; 16(2):200-206. PubMed ID: 34844287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of three block bone substitutes for bone regeneration: long-term observation in the beagle dog.
    Sawada K; Nakahara K; Haga-Tsujimura M; Iizuka T; Fujioka-Kobayashi M; Igarashi K; Saulacic N
    Odontology; 2018 Oct; 106(4):398-407. PubMed ID: 29557992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructure, physical properties, and bone regeneration effect of the nano-sized β-tricalcium phosphate granules.
    Lee DS; Pai Y; Chang S; Kim DH
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():971-6. PubMed ID: 26478393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Implanted octacalcium phosphate is more resorbable than beta-tricalcium phosphate and hydroxyapatite.
    Kamakura S; Sasano Y; Shimizu T; Hatori K; Suzuki O; Kagayama M; Motegi K
    J Biomed Mater Res; 2002 Jan; 59(1):29-34. PubMed ID: 11745534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of osteoconductive properties of three different β-tricalcium phosphate graft materials: a pilot histomorphometric study in a pig model.
    Damlar I; Erdoğan Ö; Tatli U; Arpağ OF; Görmez U; Üstün Y
    J Craniomaxillofac Surg; 2015 Jan; 43(1):175-80. PubMed ID: 25491275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility evaluation of low-crystallinity β-tricalcium phosphate blocks as a bone substitute fabricated by a dissolution-precipitation reaction from α-tricalcium phosphate blocks.
    Tripathi G; Sugiura Y; Kareiva A; Garskaite E; Tsuru K; Ishikawa K
    J Biomater Appl; 2018 Aug; 33(2):259-270. PubMed ID: 30033849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo bioresorbability and bone formation ability of sintered highly pure calcium carbonate granules.
    Umemoto S; Furusawa T; Unuma H; Tajika M; Sekino T
    Dent Mater J; 2021 Sep; 40(5):1202-1207. PubMed ID: 34121021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.
    Hara K; Fujisawa K; Nagai H; Takamaru N; Ohe G; Tsuru K; Ishikawa K; Miyamoto Y
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and bioactivity of tape-cast and sintered TCP sheets.
    Tanimoto Y; Hayakawa T; Sakae T; Nemoto K
    J Biomed Mater Res A; 2006 Mar; 76(3):571-9. PubMed ID: 16278874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.