These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30332751)

  • 41. Biomaterial resorption rate and healing site morphology of inorganic bovine bone and beta-tricalcium phosphate in the canine: a 24-month longitudinal histologic study and morphometric analysis.
    Artzi Z; Weinreb M; Givol N; Rohrer MD; Nemcovsky CE; Prasad HS; Tal H
    Int J Oral Maxillofac Implants; 2004; 19(3):357-68. PubMed ID: 15214219
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora.
    Kawamura H; Ito A; Miyakawa S; Layrolle P; Ojima K; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):184-90. PubMed ID: 10679683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histologic effect of pure-phase beta-tricalcium phosphate on bone regeneration in human artificial jawbone defects.
    Trisi P; Rao W; Rebaudi A; Fiore P
    Int J Periodontics Restorative Dent; 2003 Feb; 23(1):69-77. PubMed ID: 12617370
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of Poly Lactic-co-Glycolic Acid-Coated β-Tricalcium Phosphate Bone Substitute as a Graft Material for Ridge Preservation after Tooth Extraction in Dog Mandible: A Comparative Study with Conventional β-Tricalcium Phosphate Granules.
    Koga T; Kumazawa S; Okimura Y; Zaitsu Y; Umeshita K; Asahina I
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764407
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Histomorphometry of human sinus floor augmentation using a porous beta-tricalcium phosphate: a prospective study.
    Zerbo IR; Zijderveld SA; de Boer A; Bronckers AL; de Lange G; ten Bruggenkate CM; Burger EH
    Clin Oral Implants Res; 2004 Dec; 15(6):724-32. PubMed ID: 15533134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nabo-β-TCP synthesized via microwave treatment.
    Abdel-Fattah WI; Elkhooly TA
    Biomed Mater; 2010 Jun; 5(3):35015. PubMed ID: 20526025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone bonding mechanism of beta-tricalcium phosphate.
    Kotani S; Fujita Y; Kitsugi T; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1991 Oct; 25(10):1303-15. PubMed ID: 1812121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks.
    Fujita R; Yokoyama A; Kawasaki T; Kohgo T
    J Oral Maxillofac Surg; 2003 Sep; 61(9):1045-53. PubMed ID: 12966480
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inflammatory response and bone healing capacity of two porous calcium phosphate ceramics in critical size cortical bone defects.
    Chatterjea A; van der Stok J; Danoux CB; Yuan H; Habibovic P; van Blitterswijk CA; Weinans H; de Boer J
    J Biomed Mater Res A; 2014 May; 102(5):1399-407. PubMed ID: 23733500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep.
    Bodde EW; Wolke JG; Kowalski RS; Jansen JA
    J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone.
    Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T
    Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lumbar spinal fusion with β-TCP granules and variable Escherichia coli-derived rhBMP-2 dose.
    Pelletier MH; Oliver RA; Christou C; Yu Y; Bertollo N; Irie H; Walsh WR
    Spine J; 2014 Aug; 14(8):1758-68. PubMed ID: 24486479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Osteoinductive Moldable and Curable Bone Substitutes Based on Collagen, BMP-2 and Highly Porous Polylactide Granules, or a Mix of HAP/β-TCP.
    Vasilyev AV; Kuznetsova VS; Bukharova TB; Osidak EO; Grigoriev TE; Zagoskin YD; Nedorubova IA; Domogatsky SP; Babichenko II; Zorina OA; Kutsev SI; Chvalun SN; Kulakov AA; Losev FF; Goldshtein DV
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833275
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics of Dissolution of beta-Tricalcium Phosphate.
    Bohner M; Lemaître J; Ring TA
    J Colloid Interface Sci; 1997 Jun; 190(1):37-48. PubMed ID: 9241139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials.
    Li B; Liu Z; Yang J; Yi Z; Xiao W; Liu X; Yang X; Xu W; Liao X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 2):1200-1205. PubMed ID: 27772722
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials.
    He F; Zhang J; Yang F; Zhu J; Tian X; Chen X
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():257-65. PubMed ID: 25746269
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization and in vitro evaluation of biphasic α-tricalcium phosphate/β-tricalcium phosphate cement.
    Arahira T; Maruta M; Matsuya S
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():478-484. PubMed ID: 28254321
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios.
    Yamada S; Heymann D; Bouler JM; Daculsi G
    Biomaterials; 1997 Aug; 18(15):1037-41. PubMed ID: 9239465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.