BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30332782)

  • 1. Recent Progress on Microelectrodes in Neural Interfaces.
    Kim GH; Kim K; Lee E; An T; Choi W; Lim G; Shin JH
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30332782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro microelectrode array technology and neural recordings.
    Nam Y; Wheeler BC
    Crit Rev Biomed Eng; 2011; 39(1):45-61. PubMed ID: 21488814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of polyimide-based 'smooth' titanium nitride microelectrode arrays for neural stimulation and recording.
    Rodrigues F; Ribeiro JF; Anacleto PA; Fouchard A; David O; Sarro PM; Mendes PM
    J Neural Eng; 2019 Dec; 17(1):016010. PubMed ID: 31614339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
    Normann RA; Fernandez E
    J Neural Eng; 2016 Dec; 13(6):061003. PubMed ID: 27762237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface.
    Tang LJ; Wang MH; Tian HC; Kang XY; Hong W; Liu JQ
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon fiber electrodes for intracellular recording and stimulation.
    Huan Y; Gill JP; Fritzinger JB; Patel PR; Richie JM; Della Valle E; Weiland JD; Chestek CA; Chiel HJ
    J Neural Eng; 2021 Dec; 18(6):. PubMed ID: 34826825
    [No Abstract]   [Full Text] [Related]  

  • 11. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces.
    Ferguson M; Sharma D; Ross D; Zhao F
    Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.
    Simeral JD; Kim SP; Black MJ; Donoghue JP; Hochberg LR
    J Neural Eng; 2011 Apr; 8(2):025027. PubMed ID: 21436513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform.
    Leber M; Körner J; Reiche CF; Yin M; Bhandari R; Franklin R; Negi S; Solzbacher F
    Adv Exp Med Biol; 2019; 1101():1-40. PubMed ID: 31729670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless microelectrode arrays for selective and chronically stable peripheral nerve stimulation for hindlimb movement.
    Frederick RA; Troyk PR; Cogan SF
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34592725
    [No Abstract]   [Full Text] [Related]  

  • 16. Hollow ring-like flexible electrode architecture enabling subcellular multi-directional neural interfacing.
    Vajrala VS; Elkhoury K; Pautot S; Bergaud C; Maziz A
    Biosens Bioelectron; 2023 May; 227():115182. PubMed ID: 36870146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Biotechnol Prog; 2011; 27(3):891-5. PubMed ID: 21574266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cochlear nerve stimulation with a 3-dimensional penetrating electrode array.
    Hillman T; Badi AN; Normann RA; Kertesz T; Shelton C
    Otol Neurotol; 2003 Sep; 24(5):764-8. PubMed ID: 14501454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.