These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 30333231)

  • 41. Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization.
    Pollok S; Reiner A
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25851-25858. PubMed ID: 32999066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuroprotection by tosyl-polyamine derivatives through the inhibition of ionotropic glutamate receptors.
    Masuko T; Namiki R; Nemoto Y; Miyake M; Kizawa Y; Suzuki T; Kashiwagi K; Igarashi K; Kusama T
    J Pharmacol Exp Ther; 2009 Nov; 331(2):522-30. PubMed ID: 19644042
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spermine and related polyamines produce a voltage-dependent reduction of N-methyl-D-aspartate receptor single-channel conductance.
    Rock DM; MacDonald RL
    Mol Pharmacol; 1992 Jul; 42(1):157-64. PubMed ID: 1378923
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polyamine regulation of N-methyl-D-aspartate receptor channels.
    Rock DM; Macdonald RL
    Annu Rev Pharmacol Toxicol; 1995; 35():463-82. PubMed ID: 7598503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gating and permeation of kainate receptors: differences unveiled.
    Perrais D; Veran J; Mulle C
    Trends Pharmacol Sci; 2010 Nov; 31(11):516-22. PubMed ID: 20850188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibitory glutamate receptor channels.
    Cleland TA
    Mol Neurobiol; 1996 Oct; 13(2):97-136. PubMed ID: 8938647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Differential regulation of ionotropic glutamate receptors.
    Stoll L; Hall J; Van Buren N; Hall A; Knight L; Morgan A; Zuger S; Van Deusen H; Gentile L
    Biophys J; 2007 Feb; 92(4):1343-9. PubMed ID: 17114218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology.
    Zhou HX
    Acc Chem Res; 2017 Apr; 50(4):814-822. PubMed ID: 28186717
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites.
    Li YJ; Duan GF; Sun JH; Wu D; Ye C; Zang YY; Chen GQ; Shi YY; Wang J; Zhang W; Shi YS
    J Biol Chem; 2019 Nov; 294(47):17889-17902. PubMed ID: 31628192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of ionotropic glutamate receptors in insect neuro-muscular junction.
    Fedorova IM; Magazanik LG; Tikhonov DB
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):275-80. PubMed ID: 18723120
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits.
    Ramos-Vicente D; Grant SG; Bayés À
    Neuropharmacology; 2021 Sep; 195():108640. PubMed ID: 34116111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyamine metabolism and glutamate receptor agonists-mediated excitotoxicity in the rat brain.
    Camón L; de Vera N; Martínez E
    J Neurosci Res; 2001 Dec; 66(6):1101-11. PubMed ID: 11746442
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block.
    Bowie D; Mayer ML
    Neuron; 1995 Aug; 15(2):453-62. PubMed ID: 7646897
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits.
    Straub C; Tomita S
    Curr Opin Neurobiol; 2012 Jun; 22(3):488-95. PubMed ID: 21993243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of polyamines with ion channels.
    Williams K
    Biochem J; 1997 Jul; 325 ( Pt 2)(Pt 2):289-97. PubMed ID: 9230104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The polyamines, spermine and spermidine, negatively modulate N-methyl-d-aspartate (NMDA) and quisqualate receptor mediated responses in vivo : Cerebellar cyclic GMP measurements.
    Rao TS; Cler JA; Oei EJ; Emmett MR; Mick SJ; Iyengar S; Wood PL
    Neurochem Int; 1990; 16(2):199-206. PubMed ID: 20504558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert.
    Reiner A; Levitz J
    Neuron; 2018 Jun; 98(6):1080-1098. PubMed ID: 29953871
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Auxiliary subunits provide new insights into regulation of AMPA receptor trafficking.
    Sumioka A
    J Biochem; 2013 Apr; 153(4):331-7. PubMed ID: 23426437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Two Signaling Modes Are Better than One: Flux-Independent Signaling by Ionotropic Glutamate Receptors Is Coming of Age.
    Brunetti V; Soda T; Berra-Romani R; De Sarro G; Guerra G; Scarpellino G; Moccia F
    Biomedicines; 2024 Apr; 12(4):. PubMed ID: 38672234
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.