These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30333261)
1. Water-repellent plant surface structure induced by gall-forming insects for waste management. Uematsu K; Kutsukake M; Fukatsu T Biol Lett; 2018 Oct; 14(10):. PubMed ID: 30333261 [TBL] [Abstract][Full Text] [Related]
2. Plant Manipulation by Gall-Forming Social Aphids for Waste Management. Kutsukake M; Uematsu K; Fukatsu T Front Plant Sci; 2019; 10():933. PubMed ID: 31396247 [TBL] [Abstract][Full Text] [Related]
3. How aphids lose their marbles. Pike N; Richard D; Foster W; Mahadevan L Proc Biol Sci; 2002 Jun; 269(1497):1211-5. PubMed ID: 12065036 [TBL] [Abstract][Full Text] [Related]
4. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees. Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243 [TBL] [Abstract][Full Text] [Related]
5. Molecular and Histologic Adaptation of Horned Gall Induced by the Aphid Lu Q; Chen X; Yang Z; Bashir NH; Liu J; Cui Y; Shao S; Chen MS; Chen H Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068250 [TBL] [Abstract][Full Text] [Related]
6. A novel family of secreted insect proteins linked to plant gall development. Korgaonkar A; Han C; Lemire AL; Siwanowicz I; Bennouna D; Kopec RE; Andolfatto P; Shigenobu S; Stern DL Curr Biol; 2021 May; 31(9):1836-1849.e12. PubMed ID: 33657407 [TBL] [Abstract][Full Text] [Related]
7. An insect-induced novel plant phenotype for sustaining social life in a closed system. Kutsukake M; Meng XY; Katayama N; Nikoh N; Shibao H; Fukatsu T Nat Commun; 2012; 3():1187. PubMed ID: 23149732 [TBL] [Abstract][Full Text] [Related]
8. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls. Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840 [TBL] [Abstract][Full Text] [Related]
9. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae. Richardson RA; Body M; Warmund MR; Schultz JC; Appel HM Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691 [TBL] [Abstract][Full Text] [Related]
10. Scab formation and wound healing of plant tissue by soldier aphid. Kutsukake M; Shibao H; Uematsu K; Fukatsu T Proc Biol Sci; 2009 May; 276(1662):1555-63. PubMed ID: 19324826 [TBL] [Abstract][Full Text] [Related]
11. The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. Inbar M; Wink M; Wool D Mol Phylogenet Evol; 2004 Aug; 32(2):504-11. PubMed ID: 15223033 [TBL] [Abstract][Full Text] [Related]
12. A new perspective on plant defense against foliar gall-forming aphids through activation of the fruit abscission pathway. Hua J; Liu J; Zhou W; Ma C; Luo S Plant Physiol Biochem; 2023 Mar; 196():1046-1054. PubMed ID: 36907012 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic characterization of gall tissue of Japanese elm tree (Ulmus davidiana var. japonica) induced by the aphid Tetraneura nigriabdominalis. Takei M; Ito S; Tanaka K; Ishige T; Suzuki Y Biosci Biotechnol Biochem; 2017 Jun; 81(6):1069-1077. PubMed ID: 28164745 [TBL] [Abstract][Full Text] [Related]
14. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152 [TBL] [Abstract][Full Text] [Related]
15. Galling aphids: specialization, biological complexity, and variation. Wool D Annu Rev Entomol; 2004; 49():175-92. PubMed ID: 14651461 [TBL] [Abstract][Full Text] [Related]
16. Quantitative differences detected in the histology of galls induced by the same aphid species in different varieties of the same host. Martinez JI; Moreno-González V; Jonas-Levi A; Álvarez R Plant Biol (Stuttg); 2018 May; 20(3):516-524. PubMed ID: 29424091 [TBL] [Abstract][Full Text] [Related]
17. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology. Nabity PD; Haus MJ; Berenbaum MR; DeLucia EH Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16663-8. PubMed ID: 24067657 [TBL] [Abstract][Full Text] [Related]
18. Juveniles and the elderly defend, the middle-aged escape: division of labour in a social aphid. Uematsu K; Shimada M; Shibao H Biol Lett; 2013 Apr; 9(2):20121053. PubMed ID: 23325734 [TBL] [Abstract][Full Text] [Related]
19. Macro- and Microscopic Analyses of Anatomical Structures of Chinese Gallnuts and Their Functional Adaptation. Lu Q; Chen H; Wang C; Yang ZX; Lü P; Chen MS; Chen XM Sci Rep; 2019 Mar; 9(1):5193. PubMed ID: 30914739 [TBL] [Abstract][Full Text] [Related]
20. Gall-forming aphids are protected (and benefit) from defoliating caterpillars: the role of plant-mediated mechanisms. Kurzfeld-Zexer L; Inbar M BMC Ecol Evol; 2021 Jun; 21(1):124. PubMed ID: 34144674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]