These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30333261)

  • 21. Wax glands of the horned gall aphid, Schlechtendalia chinensis, at different stages.
    Wei H; Billen J; Yang Y; Liu P; Shao S; Chen X; Yang Z
    Arthropod Struct Dev; 2020 Sep; 58():100976. PubMed ID: 32791436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insect galls of Restinga de Marambaia (Barra de Guaratiba, Rio de Janeiro, RJ).
    Maia VC; Silva LO
    Braz J Biol; 2016 Apr; 76(3):787-95. PubMed ID: 27097094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microenvironmental analysis of two alternating hosts and their impact on the ecological adaptation of the horned sumac gall aphid Schlechtendalia chinensis (Hemiptera, Pemphiginae).
    Wang C; Liu P; Chen X; Liu J; Lu Q; Shao S; Yang Z; Chen H; King-Jones K
    Sci Rep; 2020 Jan; 10(1):435. PubMed ID: 31949256
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The origin and genetic differentiation of the socially parasitic aphid Tamalia inquilinus.
    Miller DG; Lawson SP; Rinker DC; Estby H; Abbot P
    Mol Ecol; 2015 Nov; 24(22):5751-66. PubMed ID: 26460808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal division of labor in an aphid social system.
    Shibao H; Kutsukake M; Fukatsu T
    Sci Rep; 2021 Jan; 11(1):1183. PubMed ID: 33441967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetraneura ulmi (Hemiptera: Eriosomatinae) Induces Oxidative Stress and Alters Antioxidant Enzyme Activities in Elm Leaves.
    Kmiec K; Rubinowska K; Golan K
    Environ Entomol; 2018 Aug; 47(4):840-847. PubMed ID: 29672728
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC; Isaias RM
    Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The histo structure of galls induced by aphids as a useful taxonomic character: the case of Rectinasus (Hemiptera, Aphididae, Eriosomatinae).
    Álvarez R; Molist P; González-Sierra S; Martinez JJ; Nafría JM
    Zootaxa; 2014 Sep; 3861(5):487-92. PubMed ID: 25283424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid.
    Body MJA; Zinkgraf MS; Whitham TG; Lin CH; Richardson RA; Appel HM; Schultz JC
    Mol Plant Microbe Interact; 2019 Jun; 32(6):654-672. PubMed ID: 30520677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological response of Populus nigra 'Italica' to galling aphids feeding.
    Kmieć K; Kot I
    Plant Biol (Stuttg); 2021 Jul; 23(4):675-679. PubMed ID: 33780123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-sacrificing gall repair by aphid nymphs.
    Kurosu U; Aoki S; Fukatsu T
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S12-4. PubMed ID: 12952623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.
    Giron D; Huguet E; Stone GN; Body M
    J Insect Physiol; 2016 Jan; 84():70-89. PubMed ID: 26723843
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Complex Nutrient Exchange Between a Gall-Forming Aphid and Its Plant Host.
    Chen X; Yang Z; Chen H; Qi Q; Liu J; Wang C; Shao S; Lu Q; Li Y; Wu H; King-Jones K; Chen MS
    Front Plant Sci; 2020; 11():811. PubMed ID: 32733495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphological characterization of insect galls and new records of associated invertebrates in a Cerrado area in Bahia State, Brazil.
    Lima VP; Calado D
    Braz J Biol; 2018 Nov; 78(4):636-643. PubMed ID: 29319753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Leaf trichomes in Metrosideros polymorpha can contribute to avoiding extra water stress by impeding gall formation.
    Amada G; Kobayashi K; Izuno A; Mukai M; Ostertag R; Kitayama K; Onoda Y
    Ann Bot; 2020 Mar; 125(3):533-542. PubMed ID: 31784739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of genetic variability and habitat of Qualea parviflora (Vochysiaceae) on herbivory by free-feeding and gall-forming insects.
    Gonçalves-Alvim SJ; Collevatti RG; Fernandes GW
    Ann Bot; 2004 Aug; 94(2):259-68. PubMed ID: 15234928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress Regarding the Molecular Aspects of Insect Gall Formation.
    Takeda S; Hirano T; Ohshima I; Sato MH
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502330
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antioxidant metabolism in galls due to the extended phenotypes of the associated organisms.
    Ferreira BG; Oliveira DC; Moreira ASFP; Faria AP; Guedes LM; França MGC; Álvarez R; Isaias RMS
    PLoS One; 2018; 13(10):e0205364. PubMed ID: 30346955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.