These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30333501)

  • 41. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS.
    Singha R; Pariari AK; Satpati B; Mandal P
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2468-2473. PubMed ID: 28223488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-dimensional carbon materials with an anisotropic Dirac cone: high stability and tunable Fermi velocity.
    Liu S; Wang H; Ma F; Du H; Liu B
    Phys Chem Chem Phys; 2022 Aug; 24(32):19263-19268. PubMed ID: 35920608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electronic properties of topological insulator candidate CaAgAs.
    Nayak J; Kumar N; Wu SC; Shekhar C; Fink J; Rienks EDL; Fecher GH; Sun Y; Felser C
    J Phys Condens Matter; 2018 Jan; 30(4):045501. PubMed ID: 29239863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Universal Fermi-surface anisotropy renormalization for interacting Dirac fermions with long-range interactions.
    Leaw JN; Tang HK; Trushin M; Assaad FF; Adam S
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26431-26434. PubMed ID: 31818954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Topological and transport properties of Dirac fermions in an antiferromagnetic metallic phase of iron-based superconductors.
    Morinari T; Kaneshita E; Tohyama T
    Phys Rev Lett; 2010 Jul; 105(3):037203. PubMed ID: 20867799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strain-Tuned Topological Insulator and Rashba-Induced Anisotropic Momentum-Locked Dirac Cones in Two-Dimensional SeTe Monolayers.
    Lyu JK; Ji WX; Zhang SF; Zhang CW; Wang PJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43962-43969. PubMed ID: 30474373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Borophosphene: A New Anisotropic Dirac Cone Monolayer with a High Fermi Velocity and a Unique Self-Doping Feature.
    Zhang Y; Kang J; Zheng F; Gao PF; Zhang SL; Wang LW
    J Phys Chem Lett; 2019 Nov; 10(21):6656-6663. PubMed ID: 31608641
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu
    Feng B; Fu B; Kasamatsu S; Ito S; Cheng P; Liu CC; Feng Y; Wu S; Mahatha SK; Sheverdyaeva P; Moras P; Arita M; Sugino O; Chiang TC; Shimada K; Miyamoto K; Okuda T; Wu K; Chen L; Yao Y; Matsuda I
    Nat Commun; 2017 Oct; 8(1):1007. PubMed ID: 29044100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoscale View of Engineered Massive Dirac Quasiparticles in Lithographic Superstructures.
    Jones AJH; Gammelgaard L; Sauer MO; Biswas D; Koch RJ; Jozwiak C; Rotenberg E; Bostwick A; Watanabe K; Taniguchi T; Dean CR; Jauho AP; Bøggild P; Pedersen TG; Jessen BS; Ulstrup S
    ACS Nano; 2022 Nov; 16(11):19354-19362. PubMed ID: 36321616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-Kondo-like electronic structure in the correlated rare-earth hexaboride YbB(6).
    Neupane M; Xu SY; Alidoust N; Bian G; Kim DJ; Liu C; Belopolski I; Chang TR; Jeng HT; Durakiewicz T; Lin H; Bansil A; Fisk Z; Hasan MZ
    Phys Rev Lett; 2015 Jan; 114(1):016403. PubMed ID: 25615485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ARPES view on surface and bulk hybridization phenomena in the antiferromagnetic Kondo lattice CeRh2Si2.
    Patil S; Generalov A; Güttler M; Kushwaha P; Chikina A; Kummer K; Rödel TC; Santander-Syro AF; Caroca-Canales N; Geibel C; Danzenbächer S; Kucherenko Y; Laubschat C; Allen JW; Vyalikh DV
    Nat Commun; 2016 Mar; 7():11029. PubMed ID: 26987899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electronic Band Structure of Ultimately Thin Silicon Oxide on Ru(0001).
    Kremer G; Alvarez Quiceno JC; Lisi S; Pierron T; González C; Sicot M; Kierren B; Malterre D; Rault JE; Le Fèvre P; Bertran F; Dappe YJ; Coraux J; Pochet P; Fagot-Revurat Y
    ACS Nano; 2019 Apr; 13(4):4720-4730. PubMed ID: 30916924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermi-crossing Type-II Dirac fermions and topological surface states in NiTe
    Mukherjee S; Jung SW; Weber SF; Xu C; Qian D; Xu X; Biswas PK; Kim TK; Chapon LC; Watson MD; Neaton JB; Cacho C
    Sci Rep; 2020 Jul; 10(1):12957. PubMed ID: 32737391
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A New Anisotropic Dirac Cone Material: A B
    Zhao Y; Li X; Liu J; Zhang C; Wang Q
    J Phys Chem Lett; 2018 Apr; 9(7):1815-1820. PubMed ID: 29575891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology.
    Xu H; Fei F; Chen Z; Bo X; Sun Z; Wan X; Han L; Wang L; Zhang K; Zhang J; Chen G; Liu C; Guo W; Yang L; Wei D; Song F; Chen X; Lu W
    ACS Nano; 2021 Mar; 15(3):5138-5146. PubMed ID: 33620212
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superstructure-Induced Splitting of Dirac Cones in Silicene.
    Feng B; Zhou H; Feng Y; Liu H; He S; Matsuda I; Chen L; Schwier EF; Shimada K; Meng S; Wu K
    Phys Rev Lett; 2019 May; 122(19):196801. PubMed ID: 31144949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tight-binding modeling and low-energy behavior of the semi-Dirac point.
    Banerjee S; Singh RR; Pardo V; Pickett WE
    Phys Rev Lett; 2009 Jul; 103(1):016402. PubMed ID: 19659161
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mirror Protected Dirac Fermions on a Weyl Semimetal NbP Surface.
    Zheng H; Chang G; Huang SM; Guo C; Zhang X; Zhang S; Yin J; Xu SY; Belopolski I; Alidoust N; Sanchez DS; Bian G; Chang TR; Neupert T; Jeng HT; Jia S; Lin H; Hasan MZ
    Phys Rev Lett; 2017 Nov; 119(19):196403. PubMed ID: 29219493
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robustness of Rashba and Dirac Fermions against Strong Disorder.
    Di Sante D; Barone P; Plekhanov E; Ciuchi S; Picozzi S
    Sci Rep; 2015 Jun; 5():11285. PubMed ID: 26067146
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nano-makisu: highly anisotropic two-dimensional carbon allotropes made by weaving together nanotubes.
    Zhao L; Liu W; Yi W; Hu T; Khodagholian D; Gu F; Lin H; Zurek E; Zheng Y; Miao M
    Nanoscale; 2020 Jan; 12(1):347-355. PubMed ID: 31825450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.