These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30333572)

  • 1. Correlated bursts in temporal networks slow down spreading.
    Hiraoka T; Jo HH
    Sci Rep; 2018 Oct; 8(1):15321. PubMed ID: 30333572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copula-based algorithm for generating bursty time series.
    Jo HH; Lee BH; Hiraoka T; Jung WS
    Phys Rev E; 2019 Aug; 100(2-1):022307. PubMed ID: 31574731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytically solvable autocorrelation function for weakly correlated interevent times.
    Jo HH
    Phys Rev E; 2019 Jul; 100(1-1):012306. PubMed ID: 31499919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling correlated bursts by the bursty-get-burstier mechanism.
    Jo HH
    Phys Rev E; 2017 Dec; 96(6-1):062131. PubMed ID: 29347447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burst-tree decomposition of time series reveals the structure of temporal correlations.
    Jo HH; Hiraoka T; Kivelä M
    Sci Rep; 2020 Jul; 10(1):12202. PubMed ID: 32699282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Burstiness and information spreading in active particle systems.
    Zhong W; Deng Y; Xiong D
    Soft Matter; 2023 Apr; 19(16):2962-2969. PubMed ID: 37013811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits of the memory coefficient in measuring correlated bursts.
    Jo HH; Hiraoka T
    Phys Rev E; 2018 Mar; 97(3-1):032121. PubMed ID: 29776030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated bursts and the role of memory range.
    Jo HH; Perotti JI; Kaski K; Kertész J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022814. PubMed ID: 26382461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voter model with non-Poissonian interevent intervals.
    Takaguchi T; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036115. PubMed ID: 22060464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small but slow world: how network topology and burstiness slow down spreading.
    Karsai M; Kivelä M; Pan RK; Kaski K; Kertész J; Barabási AL; Saramäki J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):025102. PubMed ID: 21405879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of small-degree nodes in assortative networks with degree-weight correlations.
    Ma S; Feng L; Monterola CP; Lai CH
    Phys Rev E; 2017 Oct; 96(4-1):042308. PubMed ID: 29347563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks.
    Gernat T; Rao VD; Middendorf M; Dankowicz H; Goldenfeld N; Robinson GE
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1433-1438. PubMed ID: 29378954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of non-Poissonian activity patterns on spreading processes.
    Vazquez A; Rácz B; Lukács A; Barabási AL
    Phys Rev Lett; 2007 Apr; 98(15):158702. PubMed ID: 17501392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual-driven versus interaction-driven burstiness in human dynamics: The case of Wikipedia edit history.
    Choi J; Hiraoka T; Jo HH
    Phys Rev E; 2021 Jul; 104(1-1):014312. PubMed ID: 34412263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow, bursty dynamics as a consequence of quenched network topologies.
    Ódor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042102. PubMed ID: 24827188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating interevent time distributions from finite observation periods in communication networks.
    Kivelä M; Porter MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052813. PubMed ID: 26651750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective information spreading based on local information in correlated networks.
    Gao L; Wang W; Pan L; Tang M; Zhang HF
    Sci Rep; 2016 Dec; 6():38220. PubMed ID: 27910882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative models of simultaneously heavy-tailed distributions of interevent times on nodes and edges.
    Fonseca Dos Reis E; Li A; Masuda N
    Phys Rev E; 2020 Nov; 102(5-1):052303. PubMed ID: 33327065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explosive spreading on complex networks: The role of synergy.
    Liu QH; Wang W; Tang M; Zhou T; Lai YC
    Phys Rev E; 2017 Apr; 95(4-1):042320. PubMed ID: 28505757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity.
    Zhou T; Liu JG; Bai WJ; Chen G; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056109. PubMed ID: 17279970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.