These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30333628)

  • 61. Gravitational waves from neutron stars and asteroseismology.
    Ho WCG
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661975
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae.
    Zumalacárregui M; Seljak U
    Phys Rev Lett; 2018 Oct; 121(14):141101. PubMed ID: 30339429
    [TBL] [Abstract][Full Text] [Related]  

  • 63. What do we really know about dark energy?
    Durrer R
    Philos Trans A Math Phys Eng Sci; 2011 Dec; 369(1957):5102-14. PubMed ID: 22084297
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817.
    Mooley KP; Nakar E; Hotokezaka K; Hallinan G; Corsi A; Frail DA; Horesh A; Murphy T; Lenc E; Kaplan DL; De K; Dobie D; Chandra P; Deller A; Gottlieb O; Kasliwal MM; Kulkarni SR; Myers ST; Nissanke S; Piran T; Lynch C; Bhalerao V; Bourke S; Bannister KW; Singer LP
    Nature; 2018 Feb; 554(7691):207-210. PubMed ID: 29261643
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cosmic Expansion History from Line-Intensity Mapping.
    Bernal JL; Breysse PC; Kovetz ED
    Phys Rev Lett; 2019 Dec; 123(25):251301. PubMed ID: 31922807
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field.
    Walter F; Decarli R; Carilli C; Bertoldi F; Cox P; Da Cunha E; Daddi E; Dickinson M; Downes D; Elbaz D; Ellis R; Hodge J; Neri R; Riechers DA; Weiss A; Bell E; Dannerbauer H; Krips M; Krumholz M; Lentati L; Maiolino R; Menten K; Rix HW; Robertson B; Spinrad H; Stark DP; Stern D
    Nature; 2012 Jun; 486(7402):233-6. PubMed ID: 22699613
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Testing Gravitational Memory Generation with Compact Binary Mergers.
    Yang H; Martynov D
    Phys Rev Lett; 2018 Aug; 121(7):071102. PubMed ID: 30169084
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817.
    De S; Finstad D; Lattimer JM; Brown DA; Berger E; Biwer CM
    Phys Rev Lett; 2018 Aug; 121(9):091102. PubMed ID: 30230872
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science.
    Zevin M; Coughlin S; Bahaadini S; Besler E; Rohani N; Allen S; Cabero M; Crowston K; Katsaggelos AK; Larson SL; Lee TK; Lintott C; Littenberg TB; Lundgren A; Østerlund C; Smith JR; Trouille L; Kalogera V
    Class Quantum Gravity; 2017; 34(No 6):. PubMed ID: 29722360
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information.
    Namikawa T; Nishizawa A; Taruya A
    Phys Rev Lett; 2016 Mar; 116(12):121302. PubMed ID: 27058068
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Beyond the Horizon Distance: LIGO-Virgo can Boost Gravitational-Wave Detection Rates by Exploiting the Mass Distribution of Neutron Stars.
    Bartos I; Márka S
    Phys Rev Lett; 2015 Dec; 115(23):231101. PubMed ID: 26684105
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Numerical relativity of compact binaries in the 21st century.
    Duez MD; Zlochower Y
    Rep Prog Phys; 2019 Jan; 82(1):016902. PubMed ID: 30117809
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Measurement of a Cosmographic Distance Ratio with Galaxy and Cosmic Microwave Background Lensing.
    Miyatake H; Madhavacheril MS; Sehgal N; Slosar A; Spergel DN; Sherwin B; van Engelen A
    Phys Rev Lett; 2017 Apr; 118(16):161301. PubMed ID: 28474927
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space.
    Seto N; Kawamura S; Nakamura T
    Phys Rev Lett; 2001 Nov; 87(22):221103. PubMed ID: 11736393
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Testing cosmogonic models with gravitational lensing.
    Wambsganss J; Cen R; Ostriker JP; Turner EL
    Science; 1995 Apr; 268(5208):274-6. PubMed ID: 17814792
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Measuring cosmological parameters.
    Freedman WL
    Proc Natl Acad Sci U S A; 1998 Jan; 95(1):2-7. PubMed ID: 9419315
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A new mechanism for gravitational-wave emission in core-collapse supernovae.
    Ott CD; Burrows A; Dessart L; Livne E
    Phys Rev Lett; 2006 May; 96(20):201102. PubMed ID: 16803162
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The first 5 years of gravitational-wave astrophysics.
    Vitale S
    Science; 2021 Jun; 372(6546):. PubMed ID: 34083462
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Hubble constant troubled by dark matter in non-standard cosmologies.
    Alcaniz JS; Neto JP; Queiroz FS; da Silva DR; Silva R
    Sci Rep; 2022 Nov; 12(1):20113. PubMed ID: 36418495
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Constraining nuclear equations of state using gravitational waves from hypermassive neutron stars.
    Shibata M
    Phys Rev Lett; 2005 May; 94(20):201101. PubMed ID: 16090233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.