These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30333709)

  • 1. Robust data-driven discovery of governing physical laws with error bars.
    Zhang S; Lin G
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven discovery of partial differential equations.
    Rudy SH; Brunton SL; Proctor JL; Kutz JN
    Sci Adv; 2017 Apr; 3(4):e1602614. PubMed ID: 28508044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework.
    Yuan Y; Li X; Li L; Jiang FJ; Tang X; Zhang F; Goncalves J; Voss HU; Ding H; Kurths J
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37967264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-informed learning of governing equations from scarce data.
    Chen Z; Liu Y; Sun H
    Nat Commun; 2021 Oct; 12(1):6136. PubMed ID: 34675223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven discovery of the governing equations of dynamical systems via moving horizon optimization.
    Lejarza F; Baldea M
    Sci Rep; 2022 Jul; 12(1):11836. PubMed ID: 35821394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion.
    Xu H; Zeng J; Zhang D
    Research (Wash D C); 2023; 6():0147. PubMed ID: 37214196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning partial differential equations for biological transport models from noisy spatio-temporal data.
    Lagergren JH; Nardini JT; Michael Lavigne G; Rutter EM; Flores KB
    Proc Math Phys Eng Sci; 2020 Feb; 476(2234):20190800. PubMed ID: 32201481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data-driven discovery of dimensionless numbers and governing laws from scarce measurements.
    Xie X; Samaei A; Guo J; Liu WK; Gan Z
    Nat Commun; 2022 Dec; 13(1):7562. PubMed ID: 36476735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
    Brunton SL; Proctor JL; Kutz JN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning partial differential equations via data discovery and sparse optimization.
    Schaeffer H
    Proc Math Phys Eng Sci; 2017 Jan; 473(2197):20160446. PubMed ID: 28265183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
    Messenger DA; Bortz DM
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34744183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
    Kaheman K; Kutz JN; Brunton SL
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200279. PubMed ID: 33214760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural ordinary differential equations with irregular and noisy data.
    Goyal P; Benner P
    R Soc Open Sci; 2023 Jul; 10(7):221475. PubMed ID: 37476515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved sparse identification of nonlinear dynamics with Akaike information criterion and group sparsity.
    Dong X; Bai YL; Lu Y; Fan M
    Nonlinear Dyn; 2023; 111(2):1485-1510. PubMed ID: 36246669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability selection enables robust learning of differential equations from limited noisy data.
    Maddu S; Cheeseman BL; Sbalzarini IF; Müller CL
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210916. PubMed ID: 35756878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization.
    Baddoo PJ; Herrmann B; McKeon BJ; Brunton SL
    Proc Math Phys Eng Sci; 2022 Apr; 478(2260):20210830. PubMed ID: 35450026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particles to partial differential equations parsimoniously.
    Arbabi H; Kevrekidis IG
    Chaos; 2021 Mar; 31(3):033137. PubMed ID: 33810723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of nonlinear dynamical systems using a Runge-Kutta inspired dictionary-based sparse regression approach.
    Goyal P; Benner P
    Proc Math Phys Eng Sci; 2022 Jun; 478(2262):20210883. PubMed ID: 35756880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient quantum partial differential equation solver with chebyshev points.
    Oz F; San O; Kara K
    Sci Rep; 2023 May; 13(1):7767. PubMed ID: 37173401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.