These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30333988)

  • 81. Copper Induces a Core Plasmon in Intermetallic Au(144,145)-xCux(SR)60 Nanoclusters.
    Malola S; Hartmann MJ; Häkkinen H
    J Phys Chem Lett; 2015 Feb; 6(3):515-20. PubMed ID: 26261973
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions.
    Pandey PA; Bell GR; Rourke JP; Sanchez AM; Elkin MD; Hickey BJ; Wilson NR
    Small; 2011 Nov; 7(22):3202-10. PubMed ID: 21953833
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography.
    Zeng C; Li T; Das A; Rosi NL; Jin R
    J Am Chem Soc; 2013 Jul; 135(27):10011-3. PubMed ID: 23815445
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Atomic diffusion within individual gold nanocrystal.
    Xiong G; Clark JN; Nicklin C; Rawle J; Robinson IK
    Sci Rep; 2014 Oct; 4():6765. PubMed ID: 25341377
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Molecular dynamics simulations on the effect of size and shape on the interactions between negative Au
    Villareal OD; Rodriguez RA; Yu L; Wambo TO
    Colloids Surf A Physicochem Eng Asp; 2016 Aug; 503():70-78. PubMed ID: 27330249
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-x-ray photoabsorption.
    Tröger L; Yokoyama T; Arvanitis D; Lederer T; Tischer M; Baberschke K
    Phys Rev B Condens Matter; 1994 Jan; 49(2):888-903. PubMed ID: 10010392
    [No Abstract]   [Full Text] [Related]  

  • 87. Critical size for a metal-nonmetal transition in transition-metal clusters.
    Zhao J; Chen X; Wang G
    Phys Rev B Condens Matter; 1994 Nov; 50(20):15424-15426. PubMed ID: 9975901
    [No Abstract]   [Full Text] [Related]  

  • 88. Welcome to the Inaugural Issue of
    ACS Nanosci Au; 2021 Dec; 1(1):1-2. PubMed ID: 37102113
    [No Abstract]   [Full Text] [Related]  

  • 89. Gold-Thiolate Nanocluster Dynamics and Intercluster Reactions Enabled by a Machine Learned Interatomic Potential.
    McCandler CA; Pihlajamäki A; Malola S; Häkkinen H; Persson KA
    ACS Nano; 2024 Jul; 18(29):19014-19023. PubMed ID: 38986022
    [TBL] [Abstract][Full Text] [Related]  

  • 90. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer.
    Liu LJ; Zhang MM; Deng Z; Yan LL; Lin Y; Phillips DL; Yam VW; He J
    Nat Commun; 2024 Jun; 15(1):4688. PubMed ID: 38824144
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Au
    Strienz M; Schnepf A
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257198
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Electron transport through supercrystals of atomically precise gold nanoclusters: a thermal bi-stability effect.
    Higaki T; Russell JC; Paley DW; Roy X; Jin R
    Chem Sci; 2023 Nov; 14(45):13191-13197. PubMed ID: 38023517
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The role of metal accessibility on carbon dioxide electroreduction in atomically precise nanoclusters.
    Li Y; Stec GJ; Thorarinsdottir AE; McGillicuddy RD; Zheng SL; Mason JA
    Chem Sci; 2023 Nov; 14(43):12283-12291. PubMed ID: 37969596
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Directing Intrinsic Chirality in Gold Nanoclusters: Preferential Formation of Stable Enantiopure Clusters in High Yield and Experimentally Unveiling the "Super" Chirality of Au
    Truttmann V; Loxha A; Banu R; Pittenauer E; Malola S; Matus MF; Wang Y; Ploetz EA; Rupprechter G; Bürgi T; Häkkinen H; Aikens C; Barrabés N
    ACS Nano; 2023 Oct; 17(20):20376-20386. PubMed ID: 37805942
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Critical roles of metal-ligand complexes in the controlled synthesis of various metal nanoclusters.
    Kim JS; Chang H; Kang S; Cha S; Cho H; Kwak SJ; Park N; Kim Y; Kang D; Song CK; Kwag J; Hahn JS; Lee WB; Hyeon T; Park J
    Nat Commun; 2023 Jun; 14(1):3201. PubMed ID: 37268615
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Enhanced Antibacterial Activity of Novel Fluorescent Glutathione-Capped Ag Nanoclusters.
    Tumskiy R; Khlebtsov B; Tumskaia A; Evstigneeva S; Antoshkina E; Zakharevich A; Khlebtsov NG
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176012
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Ligand Ratio Plays a Critical Role in the Design of Optimal Multifunctional Gold Nanoclusters for Targeted Gastric Cancer Therapy.
    Matus MF; Malola S; Häkkinen H
    ACS Nanosci Au; 2021 Dec; 1(1):47-60. PubMed ID: 37102116
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Assembling Atomically Precise Noble Metal Nanoclusters Using Supramolecular Interactions.
    Nag A; Pradeep T
    ACS Nanosci Au; 2022 Jun; 2(3):160-178. PubMed ID: 37101822
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers.
    Liu LJ; Alkan F; Zhuang S; Liu D; Nawaz T; Guo J; Luo X; He J
    Nat Commun; 2023 Apr; 14(1):2397. PubMed ID: 37100794
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Size Effects of Atomically Precise Gold Nanoclusters in Catalysis.
    Li S; Du X; Liu Z; Li Y; Shao Y; Jin R
    Precis Chem; 2023 Mar; 1(1):14-28. PubMed ID: 37025974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.