These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30333995)

  • 1. Wide-field multiphoton imaging through scattering media without correction.
    Escobet-Montalbán A; Spesyvtsev R; Chen M; Saber WA; Andrews M; Herrington CS; Mazilu M; Dholakia K
    Sci Adv; 2018 Oct; 4(10):eaau1338. PubMed ID: 30333995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De-scattering with Excitation Patterning enables rapid wide-field imaging through scattering media.
    Zheng C; Park JK; Yildirim M; Boivin JR; Xue Y; Sur M; So PTC; Wadduwage DN
    Sci Adv; 2021 Jul; 7(28):. PubMed ID: 34233883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal compressive multiphoton imaging at depth using single-pixel detection.
    Wijesinghe P; Escobet-Montalbán A; Chen M; Munro PRT; Dholakia K
    Opt Lett; 2019 Oct; 44(20):4981-4984. PubMed ID: 31613244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A demonstration of the effectiveness of a single aberration correction per optical slice in beam scanned optically sectioning microscopes.
    Poland SP; Wright AJ; Cobb S; Vijverberg JC; Girkin JM
    Micron; 2011 Jun; 42(4):318-23. PubMed ID: 20932768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging.
    Centonze VE; White JG
    Biophys J; 1998 Oct; 75(4):2015-24. PubMed ID: 9746543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limiting Factors on Image Quality in Imaging through Turbid Media under Single-photon and Two-photon Excitation.
    Schilders SP; Gu M
    Microsc Microanal; 2000 Mar; 6(2):156-160. PubMed ID: 10742403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction.
    Zhang Y; Zhou T; Hu X; Li X; Xie H; Fang L; Kong L; Dai Q
    Opt Express; 2019 Jul; 27(15):20117-20132. PubMed ID: 31510112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Two-photon laser scanning fluorescence microscopy for functional cellular imaging: Advantages and challenges or One photon is good... but two is better!].
    Dufour P; Dufour S; Castonguay A; McCarthy N; De Koninck Y
    Med Sci (Paris); 2006 Oct; 22(10):837-44. PubMed ID: 17026937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photobleaching Imprinting Enhanced Background Rejection in Line-Scanning Temporal Focusing Microscopy.
    Zhuang C; Li X; Zhang Y; Kong L; Xie H; Dai Q
    Front Chem; 2020; 8():618131. PubMed ID: 33392156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles.
    Spesyvtsev R; Rendall HA; Dholakia K
    Opt Lett; 2015 Nov; 40(21):4847-50. PubMed ID: 26512465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media.
    Edrei E; Scarcelli G
    Sci Rep; 2016 Sep; 6():33558. PubMed ID: 27633483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting scattering media for exploring 3D objects.
    Singh AK; Naik DN; Pedrini G; Takeda M; Osten W
    Light Sci Appl; 2017 Feb; 6(2):e16219. PubMed ID: 30167232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic conjugate F-SHARP microscopy.
    Papadopoulos IN; Jouhanneau JS; Takahashi N; Kaplan D; Larkum M; Poulet J; Judkewitz B
    Light Sci Appl; 2020; 9():110. PubMed ID: 32637077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging in turbid media: a transmission detector gives 2-3 order of magnitude enhanced sensitivity compared to epi-detection schemes.
    Dvornikov A; Gratton E
    Biomed Opt Express; 2016 Sep; 7(9):3747-3755. PubMed ID: 27699135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth-resolved multimodal imaging: Wavelength modulated spatially offset Raman spectroscopy with optical coherence tomography.
    Chen M; Mas J; Forbes LH; Andrews MR; Dholakia K
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28703472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging through dynamical scattering media by two-photon absorption detectors.
    Liu W; Zhou Z; Chen L; Luo X; Liu Y; Chen X; Wan W
    Opt Express; 2021 Sep; 29(19):29972-29981. PubMed ID: 34614730
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.