These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 30334278)
21. Bayesian estimation of two-part joint models for a longitudinal semicontinuous biomarker and a terminal event with INLA: Interests for cancer clinical trial evaluation. Rustand D; van Niekerk J; Rue H; Tournigand C; Rondeau V; Briollais L Biom J; 2023 Apr; 65(4):e2100322. PubMed ID: 36846925 [TBL] [Abstract][Full Text] [Related]
22. Fast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations. Rustand D; van Niekerk J; Krainski ET; Rue H; Proust-Lima C Biostatistics; 2024 Apr; 25(2):429-448. PubMed ID: 37531620 [TBL] [Abstract][Full Text] [Related]
23. On fitting spatio-temporal disease mapping models using approximate Bayesian inference. Ugarte MD; Adin A; Goicoa T; Militino AF Stat Methods Med Res; 2014 Dec; 23(6):507-30. PubMed ID: 24713158 [TBL] [Abstract][Full Text] [Related]
24. Bayesian inferences for beta semiparametric-mixed models to analyze longitudinal neuroimaging data. Wang XF; Li Y Biom J; 2014 Jul; 56(4):662-77. PubMed ID: 24664664 [TBL] [Abstract][Full Text] [Related]
25. Estimating potential savings in cancer deaths by eliminating regional and social class variation in cancer survival in the Nordic countries. Dickman PW; Gibberd RW; Hakulinen T J Epidemiol Community Health; 1997 Jun; 51(3):289-98. PubMed ID: 9229059 [TBL] [Abstract][Full Text] [Related]
26. Age-space-time CAR models in Bayesian disease mapping. Goicoa T; Ugarte MD; Etxeberria J; Militino AF Stat Med; 2016 Jun; 35(14):2391-405. PubMed ID: 26814019 [TBL] [Abstract][Full Text] [Related]
27. A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL AREAS WITH R-INLA. Khana D; Rossen LM; Hedegaard H; Warner M J Data Sci; 2018 Jan; 16(1):147-182. PubMed ID: 29520299 [TBL] [Abstract][Full Text] [Related]
28. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations. Riebler A; Held L Biom J; 2017 May; 59(3):531-549. PubMed ID: 28139001 [TBL] [Abstract][Full Text] [Related]
29. Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE approaches: Applied to data observed between 1992 and 2010 in rural North East South Africa. Musenge E; Chirwa TF; Kahn K; Vounatsou P Int J Appl Earth Obs Geoinf; 2013 Jun; 22(100):86-98. PubMed ID: 24489526 [TBL] [Abstract][Full Text] [Related]
30. Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran. Asmarian N; Ayatollahi SMT; Sharafi Z; Zare N Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31766251 [TBL] [Abstract][Full Text] [Related]
31. Quantifying geographic regions of excess stillbirth risk in the presence of spatial and spatio-temporal heterogeneity. Zahrieh D; Oleson JJ; Romitti PA Spat Spatiotemporal Epidemiol; 2019 Jun; 29():97-109. PubMed ID: 31128635 [TBL] [Abstract][Full Text] [Related]
32. Bayesian survival analysis with INLA. Alvares D; van Niekerk J; Krainski ET; Rue H; Rustand D Stat Med; 2024 Sep; 43(20):3975-4010. PubMed ID: 38922936 [TBL] [Abstract][Full Text] [Related]
33. Breast and prostate cancer mortality and industrial pollution. García-Pérez J; Pérez-Abad N; Lope V; Castelló A; Pollán M; González-Sánchez M; Valencia JL; López-Abente G; Fernández-Navarro P Environ Pollut; 2016 Jul; 214():394-399. PubMed ID: 27108043 [TBL] [Abstract][Full Text] [Related]
34. [Meta-analysis of the Italian studies on short-term effects of air pollution--MISA 1996-2002]. Biggeri A; Bellini P; Terracini B Epidemiol Prev; 2004; 28(4-5 Suppl):4-100. PubMed ID: 15730075 [TBL] [Abstract][Full Text] [Related]
35. Variation in smoking attributable all-cause mortality across municipalities in Belgium, 2018: application of a Bayesian approach for small area estimations. Putrik P; Otavova M; Faes C; Devleesschauwer B BMC Public Health; 2022 Sep; 22(1):1699. PubMed ID: 36071426 [TBL] [Abstract][Full Text] [Related]
36. Modelling of the time to death of breast cancer patients at Hiwot Fana Specialized University Hospital. Tasfa M; Takele K; Wesenu M Sci Rep; 2024 Oct; 14(1):24141. PubMed ID: 39406787 [TBL] [Abstract][Full Text] [Related]
37. Flexible modelling of spatial variation in agricultural field trials with the R package INLA. Selle ML; Steinsland I; Hickey JM; Gorjanc G Theor Appl Genet; 2019 Dec; 132(12):3277-3293. PubMed ID: 31535162 [TBL] [Abstract][Full Text] [Related]
38. Small area disease mapping of cancer incidence in British Columbia using Bayesian spatial models and the smallareamapp R Package. Simkin J; Dummer TJB; Erickson AC; Otterstatter MC; Woods RR; Ogilvie G Front Oncol; 2022; 12():833265. PubMed ID: 36338766 [TBL] [Abstract][Full Text] [Related]
39. Space-time analysis of ovarian cancer mortality rates by age groups in spanish provinces (1989-2015). Trandafir PC; Adin A; Ugarte MD BMC Public Health; 2020 Aug; 20(1):1244. PubMed ID: 32807139 [TBL] [Abstract][Full Text] [Related]
40. An accessible method for implementing hierarchical models with spatio-temporal abundance data. Ross BE; Hooten MB; Koons DN PLoS One; 2012; 7(11):e49395. PubMed ID: 23166658 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]