These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30334350)

  • 1. Photoactivity and Stability Co-Enhancement: When Localized Plasmons Meet Oxygen Vacancies in MgO.
    Liu Z; Lu Z; Bosman M; Li N; Frankcombe TJ; Jia G; Tricoli A; Liu Y; Du Y; Yin Z
    Small; 2018 Nov; 14(48):e1803233. PubMed ID: 30334350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO
    Lee MG; Moon CW; Park H; Sohn W; Kang SB; Lee S; Choi KJ; Jang HW
    Small; 2017 Oct; 13(37):. PubMed ID: 28834195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in the Design of Plasmonic Au/TiO
    Abed J; Rajput NS; Moutaouakil AE; Jouiad M
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33203122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topotactic Transformation of Solvated MgCr-LDH Nanosheets to Highly Efficient Porous MgO/MgCr
    Nayak S; Pradhan AC; Parida KM
    Inorg Chem; 2018 Jul; 57(14):8646-8661. PubMed ID: 29949363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers.
    Zhang Z; Li A; Cao SW; Bosman M; Li S; Xue C
    Nanoscale; 2014 May; 6(10):5217-22. PubMed ID: 24687039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The critical role of intragap states in the energy transfer from gold nanoparticles to TiO2.
    Naldoni A; Fabbri F; Altomare M; Marelli M; Psaro R; Selli E; Salviati G; Dal Santo V
    Phys Chem Chem Phys; 2015 Feb; 17(7):4864-9. PubMed ID: 25607570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO
    Moon SY; Song HC; Gwag EH; Nedrygailov II; Lee C; Kim JJ; Doh WH; Park JY
    Nanoscale; 2018 Dec; 10(47):22180-22188. PubMed ID: 30484456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategic modulation of energy transfer in Au-TiO
    Zhu M; Wang Y; Deng YH; Peng X; Wang X; Yuan H; Yang ZJ; Wang Y; Wang H
    Nanoscale; 2020 Apr; 12(13):7035-7044. PubMed ID: 32207505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Electrons in TiO
    Manuel AP; Shankar K
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significant enhancement of yellow-green light emission of TiO2 thin films using Au localized surface plasmons: effect of dielectric MgO spacer layer thickness.
    Zhang C; Liu W; Xu H; Ma J; Liu Y
    J Nanosci Nanotechnol; 2014 May; 14(5):3748-52. PubMed ID: 24734627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO
    Lee C; Park Y; Park JY
    RSC Adv; 2019 Jun; 9(32):18371-18376. PubMed ID: 35515219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the interfacial defects in Au/ TiO
    Li H; Wang S; Hong F; Gao Y; Zeng B; Haider RS; Fan F; Huang J; Li C
    J Chem Phys; 2020 May; 152(19):194702. PubMed ID: 33687246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Pt nanoparticles-TiO
    Qin L; Wang G; Tan Y
    Sci Rep; 2018 Nov; 8(1):16198. PubMed ID: 30385808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of defective states in MgO nanoparticles on the photophysical properties and photostability of MEH-PPV/MgO nanocomposite.
    Kumar SA; Shankar JS; Periyasamy BK; Nayak SK
    Phys Chem Chem Phys; 2021 Oct; 23(39):22804-22816. PubMed ID: 34610057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts.
    Wang S; Gao Y; Miao S; Liu T; Mu L; Li R; Fan F; Li C
    J Am Chem Soc; 2017 Aug; 139(34):11771-11778. PubMed ID: 28777568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient electrostatic self-assembly of one-dimensional CdS-Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect.
    Liu S; Xu YJ
    Nanoscale; 2013 Oct; 5(19):9330-9. PubMed ID: 23955150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable synthesis of concave cubic gold core-shell nanoparticles for plasmon-enhanced photon harvesting.
    Bai Y; Butburee T; Yu H; Li Z; Amal R; Lu GQ; Wang L
    J Colloid Interface Sci; 2015 Jul; 449():246-51. PubMed ID: 25498878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitization of Pt/TiO
    Wang F; Wong RJ; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30575-30582. PubMed ID: 28829570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.