BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

702 related articles for article (PubMed ID: 30334629)

  • 1. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease.
    Touyz RM; Anagnostopoulou A; Camargo LL; Rios FJ; Montezano AC
    Antioxid Redox Signal; 2019 Mar; 30(7):1027-1040. PubMed ID: 30334629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NOX5: Molecular biology and pathophysiology.
    Touyz RM; Anagnostopoulou A; Rios F; Montezano AC; Camargo LL
    Exp Physiol; 2019 May; 104(5):605-616. PubMed ID: 30801870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function.
    Montezano AC; De Lucca Camargo L; Persson P; Rios FJ; Harvey AP; Anagnostopoulou A; Palacios R; Gandara ACP; Alves-Lopes R; Neves KB; Dulak-Lis M; Holterman CE; de Oliveira PL; Graham D; Kennedy C; Touyz RM
    J Am Heart Assoc; 2018 Jun; 7(12):. PubMed ID: 29907654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Molecular Regulation and Functional Roles of NOX5.
    Fulton DJR
    Methods Mol Biol; 2019; 1982():353-375. PubMed ID: 31172484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of cholesterol-rich microdomains in the regulation of Nox isoforms and redox signaling in human vascular smooth muscle cells.
    Anagnostopoulou A; Camargo LL; Rodrigues D; Montezano AC; Touyz RM
    Sci Rep; 2020 Oct; 10(1):17818. PubMed ID: 33082354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidases in vascular pathology.
    Konior A; Schramm A; Czesnikiewicz-Guzik M; Guzik TJ
    Antioxid Redox Signal; 2014 Jun; 20(17):2794-814. PubMed ID: 24180474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension.
    Camargo LL; Montezano AC; Hussain M; Wang Y; Zou Z; Rios FJ; Neves KB; Alves-Lopes R; Awan FR; Guzik TJ; Jensen T; Hartley RC; Touyz RM
    Cardiovasc Res; 2022 Mar; 118(5):1359-1373. PubMed ID: 34320175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NOX Inhibitors: From Bench to Naxibs to Bedside.
    Elbatreek MH; Mucke H; Schmidt HHHW
    Handb Exp Pharmacol; 2021; 264():145-168. PubMed ID: 32780287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System.
    Eid SA; Savelieff MG; Eid AA; Feldman EL
    Antioxid Redox Signal; 2022 Sep; 37(7-9):613-630. PubMed ID: 34861780
    [No Abstract]   [Full Text] [Related]  

  • 10. NOX5-induced uncoupling of endothelial NO synthase is a causal mechanism and theragnostic target of an age-related hypertension endotype.
    Elbatreek MH; Sadegh S; Anastasi E; Guney E; Nogales C; Kacprowski T; Hassan AA; Teubner A; Huang PH; Hsu CY; Schiffers PMH; Janssen GM; Kleikers PWM; Wipat A; Baumbach J; De Mey JGR; Schmidt HHHW
    PLoS Biol; 2020 Nov; 18(11):e3000885. PubMed ID: 33170835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nox (NADPH Oxidase) 1, Nox4, and Nox5 Promote Vascular Permeability and Neovascularization in Retinopathy.
    Deliyanti D; Alrashdi SF; Touyz RM; Kennedy CR; Jha JC; Cooper ME; Jandeleit-Dahm KA; Wilkinson-Berka JL
    Hypertension; 2020 Apr; 75(4):1091-1101. PubMed ID: 32114846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research.
    Montezano AC; Touyz RM
    Antioxid Redox Signal; 2014 Jan; 20(1):164-82. PubMed ID: 23600794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.
    Nguyen Dinh Cat A; Montezano AC; Burger D; Touyz RM
    Antioxid Redox Signal; 2013 Oct; 19(10):1110-20. PubMed ID: 22530599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells.
    Yu P; Han W; Villar VA; Yang Y; Lu Q; Lee H; Li F; Quinn MT; Gildea JJ; Felder RA; Jose PA
    Redox Biol; 2014; 2():570-9. PubMed ID: 24688893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models.
    Rivera J; Sobey CG; Walduck AK; Drummond GR
    Redox Rep; 2010; 15(2):50-63. PubMed ID: 20500986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells.
    Andueza A; Garde N; García-Garzón A; Ansorena E; López-Zabalza MJ; Iraburu MJ; Zalba G; Martínez-Irujo JJ
    Free Radic Biol Med; 2018 Oct; 126():15-26. PubMed ID: 30036633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian NADPH Oxidases.
    Buvelot H; Jaquet V; Krause KH
    Methods Mol Biol; 2019; 1982():17-36. PubMed ID: 31172464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, regulation, and physiological functions of NADPH oxidase 5 (NOX5).
    García JG; Ansorena E; Izal I; Zalba G; de Miguel C; Milagro FI
    J Physiol Biochem; 2023 May; 79(2):383-395. PubMed ID: 36905456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point mutations in the proline-rich region of p22phox are dominant inhibitors of Nox1- and Nox2-dependent reactive oxygen generation.
    Kawahara T; Ritsick D; Cheng G; Lambeth JD
    J Biol Chem; 2005 Sep; 280(36):31859-69. PubMed ID: 15994299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases.
    Sedeek M; Hébert RL; Kennedy CR; Burns KD; Touyz RM
    Curr Opin Nephrol Hypertens; 2009 Mar; 18(2):122-7. PubMed ID: 19430333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.