BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

703 related articles for article (PubMed ID: 30334629)

  • 21. On the mechanism of calcium-dependent activation of NADPH oxidase 5 (NOX5).
    Millana Fañanás E; Todesca S; Sicorello A; Masino L; Pompach P; Magnani F; Pastore A; Mattevi A
    FEBS J; 2020 Jun; 287(12):2486-2503. PubMed ID: 31785178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5.
    Montezano AC; Burger D; Ceravolo GS; Yusuf H; Montero M; Touyz RM
    Clin Sci (Lond); 2011 Feb; 120(4):131-41. PubMed ID: 21039341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic regulation and functional relevance of NOX5.
    Chen F; Wang Y; Barman S; Fulton DJ
    Curr Pharm Des; 2015; 21(41):5999-6008. PubMed ID: 26510438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Podocyte NADPH Oxidase 5 Promotes Renal Inflammation Regulated by the Toll-Like Receptor Pathway.
    Holterman CE; Boisvert NC; Thibodeau JF; Kamto E; Novakovic M; Abd-Elrahman KS; Ferguson SSG; Kennedy CRJ
    Antioxid Redox Signal; 2019 May; 30(15):1817-1830. PubMed ID: 30070142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
    Bedard K; Krause KH
    Physiol Rev; 2007 Jan; 87(1):245-313. PubMed ID: 17237347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NADPH oxidases and vascular remodeling in cardiovascular diseases.
    García-Redondo AB; Aguado A; Briones AM; Salaices M
    Pharmacol Res; 2016 Dec; 114():110-120. PubMed ID: 27773825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes.
    Manea SA; Antonescu ML; Fenyo IM; Raicu M; Simionescu M; Manea A
    Redox Biol; 2018 Jun; 16():332-343. PubMed ID: 29587244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide reduces NADPH oxidase 5 (Nox5) activity by reversible S-nitrosylation.
    Qian J; Chen F; Kovalenkov Y; Pandey D; Moseley MA; Foster MW; Black SM; Venema RC; Stepp DW; Fulton DJ
    Free Radic Biol Med; 2012 May; 52(9):1806-19. PubMed ID: 22387196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox signaling, Nox5 and vascular remodeling in hypertension.
    Montezano AC; Tsiropoulou S; Dulak-Lis M; Harvey A; Camargo Lde L; Touyz RM
    Curr Opin Nephrol Hypertens; 2015 Sep; 24(5):425-33. PubMed ID: 26197203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension.
    Camargo LL; Harvey AP; Rios FJ; Tsiropoulou S; Da Silva RNO; Cao Z; Graham D; McMaster C; Burchmore RJ; Hartley RC; Bulleid N; Montezano AC; Touyz RM
    Hypertension; 2018 Jul; 72(1):235-246. PubMed ID: 29844144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Endothelial NADPH oxidases: which NOX to target in vascular disease?
    Drummond GR; Sobey CG
    Trends Endocrinol Metab; 2014 Sep; 25(9):452-63. PubMed ID: 25066192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician.
    Montezano AC; Touyz RM
    Can J Cardiol; 2012 May; 28(3):288-95. PubMed ID: 22445098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The emerging role of NADPH oxidase NOX5 in vascular disease.
    Jha JC; Watson AMD; Mathew G; de Vos LC; Jandeleit-Dahm K
    Clin Sci (Lond); 2017 May; 131(10):981-990. PubMed ID: 28473473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR/Cas9-mediated knockout of p22phox leads to loss of Nox1 and Nox4, but not Nox5 activity.
    Prior KK; Leisegang MS; Josipovic I; Löwe O; Shah AM; Weissmann N; Schröder K; Brandes RP
    Redox Biol; 2016 Oct; 9():287-295. PubMed ID: 27614387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating ROS-Sensitive Pathways.
    Jha JC; Dai A; Garzarella J; Charlton A; Urner S; Østergaard JA; Okabe J; Holterman CE; Skene A; Power DA; Ekinci EI; Coughlan MT; Schmidt HHHW; Cooper ME; Touyz RM; Kennedy CR; Jandeleit-Dahm K
    Diabetes; 2022 Jun; 71(6):1282-1298. PubMed ID: 35275988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative stress, Noxs, and hypertension: experimental evidence and clinical controversies.
    Montezano AC; Touyz RM
    Ann Med; 2012 Jun; 44 Suppl 1():S2-16. PubMed ID: 22713144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives.
    Dang PM; Rolas L; El-Benna J
    Antioxid Redox Signal; 2020 Aug; 33(5):354-373. PubMed ID: 31968991
    [No Abstract]   [Full Text] [Related]  

  • 38. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease.
    Guzik TJ; Chen W; Gongora MC; Guzik B; Lob HE; Mangalat D; Hoch N; Dikalov S; Rudzinski P; Kapelak B; Sadowski J; Harrison DG
    J Am Coll Cardiol; 2008 Nov; 52(22):1803-9. PubMed ID: 19022160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders.
    Tarafdar A; Pula G
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30513656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca
    Zhao GJ; Zhao CL; Ouyang S; Deng KQ; Zhu L; Montezano AC; Zhang C; Hu F; Zhu XY; Tian S; Liu X; Ji YX; Zhang P; Zhang XJ; She ZG; Touyz RM; Li H
    Hypertension; 2020 Sep; 76(3):827-838. PubMed ID: 32683902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.