These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 30334750)
1. Deep Geodesic Learning for Segmentation and Anatomical Landmarking. Torosdagli N; Liberton DK; Verma P; Sincan M; Lee JS; Bagci U IEEE Trans Med Imaging; 2019 Apr; 38(4):919-931. PubMed ID: 30334750 [TBL] [Abstract][Full Text] [Related]
2. Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization. Zhang J; Liu M; Wang L; Chen S; Yuan P; Li J; Shen SG; Tang Z; Chen KC; Xia JJ; Shen D Med Image Anal; 2020 Feb; 60():101621. PubMed ID: 31816592 [TBL] [Abstract][Full Text] [Related]
3. Joint Craniomaxillofacial Bone Segmentation and Landmark Digitization by Context-Guided Fully Convolutional Networks. Zhang J; Liu M; Wang L; Chen S; Yuan P; Li J; Shen SG; Tang Z; Chen KC; Xia JJ; Shen D Med Image Comput Comput Assist Interv; 2017 Sep; 10434():720-728. PubMed ID: 29376150 [TBL] [Abstract][Full Text] [Related]
4. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided cephalometric landmark annotation for CBCT data. Codari M; Caffini M; Tartaglia GM; Sforza C; Baselli G Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):113-121. PubMed ID: 27358080 [TBL] [Abstract][Full Text] [Related]
6. Automatic Craniomaxillofacial Landmark Digitization via Segmentation-Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features. Zhang J; Gao Y; Wang L; Tang Z; Xia JJ; Shen D IEEE Trans Biomed Eng; 2016 Sep; 63(9):1820-1829. PubMed ID: 26625402 [TBL] [Abstract][Full Text] [Related]
7. Relational reasoning network for anatomical landmarking. Torosdagli N; Anwar S; Verma P; Liberton DK; Lee JS; Han WW; Bagci U J Med Imaging (Bellingham); 2023 Mar; 10(2):024002. PubMed ID: 36891503 [TBL] [Abstract][Full Text] [Related]
8. Clinical feasibility of deep learning-based automatic head CBCT image segmentation and landmark detection in computer-aided surgical simulation for orthognathic surgery. Deng HH; Liu Q; Chen A; Kuang T; Yuan P; Gateno J; Kim D; Barber JC; Xiong KG; Yu P; Gu KJ; Xu X; Yan P; Shen D; Xia JJ Int J Oral Maxillofac Surg; 2023 Jul; 52(7):793-800. PubMed ID: 36372697 [TBL] [Abstract][Full Text] [Related]
9. Deep learning for 3D cephalometric landmarking with heterogeneous multi-center CBCT dataset. Sahlsten J; Järnstedt J; Jaskari J; Naukkarinen H; Mahasantipiya P; Charuakkra A; Vasankari K; Hietanen A; Sundqvist O; Lehtinen A; Kaski K PLoS One; 2024; 19(6):e0305947. PubMed ID: 38917161 [TBL] [Abstract][Full Text] [Related]
10. Automated segmentation of dental CBCT image with prior-guided sequential random forests. Wang L; Gao Y; Shi F; Li G; Chen KC; Tang Z; Xia JJ; Shen D Med Phys; 2016 Jan; 43(1):336. PubMed ID: 26745927 [TBL] [Abstract][Full Text] [Related]
11. A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images. Gupta A; Kharbanda OP; Sardana V; Balachandran R; Sardana HK Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1737-52. PubMed ID: 25847662 [TBL] [Abstract][Full Text] [Related]
12. A novel approach to craniofacial analysis using automated 3D landmarking of the skull. Wilke F; Matthews H; Herrick N; Dopkins N; Claes P; Walsh S Sci Rep; 2024 May; 14(1):12381. PubMed ID: 38811771 [TBL] [Abstract][Full Text] [Related]
13. Accuracy and reliability of automatic three-dimensional cephalometric landmarking. Dot G; Rafflenbeul F; Arbotto M; Gajny L; Rouch P; Schouman T Int J Oral Maxillofac Surg; 2020 Oct; 49(10):1367-1378. PubMed ID: 32169306 [TBL] [Abstract][Full Text] [Related]
14. Using cone beam computed tomography to determine safe regions for implant placement. Sokhn S; Nasseh I; Noujeim M Gen Dent; 2011; 59(2):e72-7. PubMed ID: 21903512 [TBL] [Abstract][Full Text] [Related]
15. Localization of Craniomaxillofacial Landmarks on CBCT Images Using 3D Mask R-CNN and Local Dependency Learning. Lang Y; Lian C; Xiao D; Deng H; Thung KH; Yuan P; Gateno J; Kuang T; Alfi DM; Wang L; Shen D; Xia JJ; Yap PT IEEE Trans Med Imaging; 2022 Oct; 41(10):2856-2866. PubMed ID: 35544487 [TBL] [Abstract][Full Text] [Related]
16. Automated localization of mandibular landmarks in the construction of mandibular median sagittal plane. Wang Y; Wu W; Christelle M; Sun M; Wen Z; Lin Y; Zhang H; Xu J Eur J Med Res; 2024 Jan; 29(1):84. PubMed ID: 38287445 [TBL] [Abstract][Full Text] [Related]
17. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
18. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. Li X; Chen H; Qi X; Dou Q; Fu CW; Heng PA IEEE Trans Med Imaging; 2018 Dec; 37(12):2663-2674. PubMed ID: 29994201 [TBL] [Abstract][Full Text] [Related]
19. The effect of automated landmark identification on morphometric analyses. Percival CJ; Devine J; Darwin BC; Liu W; van Eede M; Henkelman RM; Hallgrimsson B J Anat; 2019 Jun; 234(6):917-935. PubMed ID: 30901082 [TBL] [Abstract][Full Text] [Related]
20. Automatic landmarking as a convenient prerequisite for geometric morphometrics. Validation on cone beam computed tomography (CBCT)- based shape analysis of the nasal complex. Ridel AF; Demeter F; Galland M; L'abbé EN; Vandermeulen D; Oettlé AC Forensic Sci Int; 2020 Jan; 306():110095. PubMed ID: 31841934 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]