BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 30334770)

  • 1. Validation and Benchmarking of a Wearable EEG Acquisition Platform for Real-World Applications.
    Valentin O; Ducharme M; Cretot-Richert G; Monsarrat-Chanon H; Viallet G; Delnavaz A; Voix J
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):103-111. PubMed ID: 30334770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and verification of a wearable wireless 64-channel high-resolution EEG acquisition system with wi-fi transmission.
    Lin CT; Wang Y; Chen SF; Huang KC; Liao LD
    Med Biol Eng Comput; 2023 Nov; 61(11):3003-3019. PubMed ID: 37563528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. myBrain: a novel EEG embedded system for epilepsy monitoring.
    Pinho F; Cerqueira J; Correia J; Sousa N; Dias N
    J Med Eng Technol; 2017 Oct; 41(7):564-585. PubMed ID: 28994627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology.
    Xu J; Mitra S; Van Hoof C; Yazicioglu RF; Makinwa KAA
    IEEE Rev Biomed Eng; 2017; 10():187-198. PubMed ID: 28113349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Power High-Input-Impedance EEG Signal Acquisition SoC With Fully Integrated IA and Signal-Specific ADC for Wearable Applications.
    Tohidi M; Kargaard Madsen J; Moradi F
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1437-1450. PubMed ID: 31443053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Custom-Fitted In- and Around-the-Ear Sensors for Unobtrusive and On-the-Go EEG Acquisitions: Development and Validation.
    Valentin O; Viallet G; Delnavaz A; Cretot-Richert G; Ducharme M; Monsarat-Chanon H; Voix J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes.
    Mathewson KE; Harrison TJ; Kizuk SA
    Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier.
    De Vos M; Kroesen M; Emkes R; Debener S
    J Neural Eng; 2014 Jun; 11(3):036008. PubMed ID: 24763067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone.
    Blum S; Debener S; Emkes R; Volkening N; Fudickar S; Bleichner MG
    Biomed Res Int; 2017; 2017():3072870. PubMed ID: 29349070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Modular Board for EEG Signal Acquisition.
    Uktveris T; Jusas V
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal Quality Investigation of a New Wearable Frontal Lobe EEG Device.
    Gao Z; Cui X; Wan W; Qin Z; Gu Z
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireless and Wearable Auditory EEG Acquisition Hardware Using Around-The-Ear cEEGrid Electrodes.
    Van Den Broucke A; Van Kerrebrouck J; Van Ransbeeck W; Pynckels R; Frater A; Torfs G; Verhulst S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
    Yu YH; Lu SW; Chuang CH; King JT; Chang CL; Chen SA; Chen SF; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):806-13. PubMed ID: 26780814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Wearable EEG Devices Specialized for Passive Brain-Computer Interface Applications.
    Park S; Han CH; Im CH
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asynchronous Detection of Trials Onset from Raw EEG Signals.
    Lopez-Gordo MA; Grima Murcia MD; Padilla P; Pelayo F; Fernandez E
    Int J Neural Syst; 2016 Nov; 26(7):1650034. PubMed ID: 27377663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality Assessment of Single-Channel EEG for Wearable Devices.
    Grosselin F; Navarro-Sune X; Vozzi A; Pandremmenou K; De Vico Fallani F; Attal Y; Chavez M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30709004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable electroencephalography. What is it, why is it needed, and what does it entail?
    Casson A; Yates D; Smith S; Duncan J; Rodriguez-Villegas E
    IEEE Eng Med Biol Mag; 2010; 29(3):44-56. PubMed ID: 20659857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.