BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30334805)

  • 1. MEC: Misassembly Error Correction in contigs based on distribution of paired-end reads and statistics of GC-contents.
    Wu B; Li M; Liao X; Luo J; Wu F; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Oct; ():. PubMed ID: 30334805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PECC: Correcting contigs based on paired-end read distribution.
    Li M; Wu B; Yan X; Luo J; Pan Y; Wu FX; Wang J
    Comput Biol Chem; 2017 Aug; 69():178-184. PubMed ID: 28545961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NxRepair: error correction in de novo sequence assembly using Nextera mate pairs.
    Murphy RR; O'Connell J; Cox AJ; Schulz-Trieglaff O
    PeerJ; 2015; 3():e996. PubMed ID: 26056623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ReMILO: reference assisted misassembly detection algorithm using short and long reads.
    Bao E; Song C; Lan L
    Bioinformatics; 2018 Jan; 34(1):24-32. PubMed ID: 28961789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. metaMIC: reference-free misassembly identification and correction of de novo metagenomic assemblies.
    Lai S; Pan S; Sun C; Coelho LP; Chen WH; Zhao XM
    Genome Biol; 2022 Nov; 23(1):242. PubMed ID: 36376928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LongStitch: high-quality genome assembly correction and scaffolding using long reads.
    Coombe L; Li JX; Lo T; Wong J; Nikolic V; Warren RL; Birol I
    BMC Bioinformatics; 2021 Oct; 22(1):534. PubMed ID: 34717540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VGEA: an RNA viral assembly toolkit.
    Oluniyi PE; Ajogbasile F; Oguzie J; Uwanibe J; Kayode A; Happi A; Ugwu A; Olumade T; Ogunsanya O; Eromon PE; Folarin O; Frost SDW; Heeney J; Happi CT
    PeerJ; 2021; 9():e12129. PubMed ID: 34567846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPGA-SC : A Framework for de novo Assembly of Single-Cell Sequencing Reads.
    Liao X; Li M; Luo J; Zou Y; Wu FX; Yi-Pan ; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1492-1503. PubMed ID: 31603794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ISEA: Iterative Seed-Extension Algorithm for De Novo Assembly Using Paired-End Information and Insert Size Distribution.
    Li M; Liao Z; He Y; Wang J; Luo J; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):916-925. PubMed ID: 27076460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Illumina error correction near highly repetitive DNA regions improves de novo genome assembly.
    Heydari M; Miclotte G; Van de Peer Y; Fostier J
    BMC Bioinformatics; 2019 Jun; 20(1):298. PubMed ID: 31159722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme.
    Guo L; Xu M; Wang W; Gu S; Zhao X; Chen F; Wang O; Xu X; Seim I; Fan G; Deng L; Liu X
    BMC Bioinformatics; 2021 Mar; 22(1):158. PubMed ID: 33765921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver.
    Wymant C; Blanquart F; Golubchik T; Gall A; Bakker M; Bezemer D; Croucher NJ; Hall M; Hillebregt M; Ong SH; Ratmann O; Albert J; Bannert N; Fellay J; Fransen K; Gourlay A; Grabowski MK; Gunsenheimer-Bartmeyer B; Günthard HF; Kivelä P; Kouyos R; Laeyendecker O; Liitsola K; Meyer L; Porter K; Ristola M; van Sighem A; Berkhout B; Cornelissen M; Kellam P; Reiss P; Fraser C;
    Virus Evol; 2018 Jan; 4(1):vey007. PubMed ID: 29876136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GapReduce: a gap filling algorithm based on partitioned read sets.
    Luo J; Wang J; Shang J; Luo H; Li M; Wu F; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Jan; ():. PubMed ID: 29993951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contig-Layout-Authenticator (CLA): A Combinatorial Approach to Ordering and Scaffolding of Bacterial Contigs for Comparative Genomics and Molecular Epidemiology.
    Shaik S; Kumar N; Lankapalli AK; Tiwari SK; Baddam R; Ahmed N
    PLoS One; 2016; 11(6):e0155459. PubMed ID: 27248146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BOSS: a novel scaffolding algorithm based on an optimized scaffold graph.
    Luo J; Wang J; Zhang Z; Li M; Wu FX
    Bioinformatics; 2017 Jan; 33(2):169-176. PubMed ID: 27634951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome sequence assembly algorithms and misassembly identification methods.
    Meng Y; Lei Y; Gao J; Liu Y; Ma E; Ding Y; Bian Y; Zu H; Dong Y; Zhu X
    Mol Biol Rep; 2022 Nov; 49(11):11133-11148. PubMed ID: 36151399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.